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Convolution

In this chapter and the next it will seem that fhysicscourse is actually just mathematics and defini-
tions of words than have little to do with the real world. If you bear with me, we shall emerge on the
other side to do some physics.

m Introduction

Convolution is sometimes callégltung which is German fofolding, and is also described by terms
such asunning meancross-correlation functiorsmoothingand so on.

The convolution of two functiont) andg(t) is:

h (t) Ef f (u)y g (t -u)du
Often we shall write this as:

h(t) =f (t) »g(t)
The above form is strictly notational. Do not use it, for example, M#thematicawhich will interpret

the asterisk as multiplication.

Convolution turns out to be amazingly useful for a number of tasks. Here is one of them. We have a
noisy Bessel function signal:

A noisy Bessel function
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We will convolve this signal with a Gaussian "kernel":
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A Gaussian convolution kernel
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The result of the convolution smooths out the noise in the original signal:

Convolution of the signal with the kernel
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You will notice that in the above example, the signal and the kernel are both discrete time series, not
continuous functions. In this case, the convolution is a sum instead of an integral:

m
hi = ij i -]
j =0
Here is an example. Choodsandg to be:

f
g

{fo,f 1, T2}
{do, 911}

Then:

m
ho = ij do -j
2o

Thef; terms are non-zero only for j between 0 and 2ndse equal to 2. Alsogo_; is non-zero only for
j equal to zero. So:

ho = fo Qo
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Similarly:
m
hy = ijgl i =fog1 + f190
J=0
m
hy = ijgz i =f101 +fado
j =0
m
hs = ijgs i =fa01
j =0
Thus:

h=f *9g={fo0go, fo0g1 +f100, f 101 +f200, f 201}

Now we form the convolution:
h =g «f

Then:

m
(h')o = D9 fo-j
j=0
where now, sincg; is non-zero only for values pfless than or equal to &) is equal to 2. The result
is:
(h')o = gofo

This is the same d% calculated above. Similarly, it is simple to show that all the terrhs ame the
same a$. In general for all convolutions:

fxg = g=f

Before we described convolving a noisy Bessel function signal with a Gaussian kernel. We now see
that we could equally well say we were convolving a Gaussian signal with a noisy Bessel function
kernel.

It can also be shown that in general:

fx(@g*h) = (f xg) *xh
fx(@+h) =fxg +f =xh
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Here is a way to visualise how the convolution calculations are done. Imagine we have two strips of
paper, and on one we write the elementé afid on the other we write the elementg af reverse
order.

f0 f1 £2 £3 .. fm|
lgn g3 g2 gl go|

To get the first element of the convolution, we put the left-most elemdnalodve the right-most
element om:

£f0 £1 £2 £3 .. £m
lgn g3 g2 gl g0

Then we read out the valuetd as the product of the overlapping terri@sgO.

To get the next term we overlap two of the values:

f0 £f1 £2 £2 .. fm
lgn g3 g2 gl go|
The resulthl, is the sum of the products of the overlapping tefthgl + f1 gO.

The next term in the convolution comes by overlapping three values:

£f0 f1 £2 £3 .. fm|
lgn g3 g2 gl go|
This givesf0 g2 + f1 g1 + f2 g0

We continue shifting the strips by one position and reading out the result.

Finally, here is a representation of the last term in the convolution:

f0O £1 £2 £3 ... fm
gn . g3 g2 gl go|

The value is, of coursén gn.

The above technique of visualising convolution calculations makes it fairly easy to see that the number
of terms in the convolution dfandg is the number of terms frplus the number of terms giminus 1.

Length [h] = Length [f] + Length [g] - 1
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We end this discussion with a final example of convolution. Let:

f = {f01f11f21f31f4"'!f m}
1 1 1
-z 3 3

Then the convolutioftg is:

f*g:
{fo/3, (o +f1)/3, (o +f1 +Ff2)/3, (f1 +fo +13)/3, ...,
(fm-2+fm-1+fm)/3, (fm—1+fm)/3ufm/3}

Note that the inner terms are just the averages of three neighboring vdlues of

m System Response

In this section we get closer to using convolution in a real-life situation. First we need a couple of
function definitions.

The first is the Dirac delta functia¥(t). This is a function that our mathematician colleagues say can
not exist, although as physicists we use it routinely. It has the following properties:

5 () =0, t
§() =0,t <0

jma (tydt =1

You may find it helpful to think of this function as something like a normalised Gaussian centered at
= 0 in the limit that the width of the curvegoes to zero:

. o 2 2
||m0 eX /2 o
o _\/_2

T

The above is only a guide for your thinking: in fact the mathematicians are correct in saying this func-
tion does not really exist. Instead it is sometimes callatbaoper function Also note that | have used
e for the irrational number 2.71828 Mathematicauses the symbd for this number.

Another popular way of visualising the Dirac delta function is that it is a rectangle fuhgtigrof
height 1h and widthh in the limit thath goes to zero:
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Rectangle function for h =1
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Note that the convolution of the delta functig{h- to ) with any functionf(t) gives:

h(t) =f (t) *6(t - tg) =Jmf (U) & (U - tg)du = f (tg)

Thus, the convolution "picks" out valuesfof
Consider a unit step function:

H(t) 00t <O
H¢) =1,t >0

Heaviside function
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This is sometimes called a "Heaviside" function.
Consider the convolution:
aH({t -tg) *= 6 (t)

Here the "step" goes from zeroaat timety. But what is the value of the convolution? Is it zero? Is it
a?

Probably the most reasonable choica/ and this is the choice we will make in this course. We will
make similar choices whenever we encounter a function with a discontinuity.

The convolution of the Heaviside function with d(ty is just:

© t
f(t)*H(t)=jf (u) H(t —u)dlu:jf(u)dlu
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It is also interesting to note the the derivativédofvith respect td looks like the Dirac delta function.
In fact, if we ignore the fact that the delta functiomigroper, we can and will say that the derivative
of H is the delta function.

Now we consider a simple electrical circuit:

R

At time t equal to zero the capacitor is uncharged and the s@witslhen closed. Thus the input volt-
age is:

Vinp (t) = VH()

It is simple to show that the currdnis:
Vv
| = — e /RCH (1)
R

We define thempulse responsef the circuit as the values of the current when the input voltage is:
Vinp (t) = Vé (t)
The impulse response is just the derivative of the culrenthe original input voltage:

d
dt

| impulse =

V etire - Y( 1 ire )
(Re H(t)) il G IR H(t)

In fact, it can be shown that if the impulse responsengisystem iRimpuise , then its response to any
inputInp is the convolution:

Inp = Rimpulse
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Finally, a little nomenclature regarding systems.

We say a system Imear if its response to any input is proportional to the magnitude of the input to the
system. Prof. Drummond characterises a linear system this way: "If | kick it it screams; if | kick it twice
as hard it screams twice as loud."

Finally, we are assuming that the input to the system begins at time t = 0. If the output from the system
for negative times is also zero, we say the systarausal Later you may be surprised to learn that we
sometimes consider non-causal systems.

Usually, however, we shall be considering linear causal systems in this course.
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