Problem Solutions

Problem 1

Part A

For the light traveling to Reflector R_{1}, the light that reaches the reflector must be going "upwind" relative to the interferometer, as shown. Therefore, its speed relative to the interferometer is

$$
\sqrt{c^{2}-v^{2}}
$$

The light travels a total distance $2 L$, so the time is

$$
\begin{equation*}
t_{1}=\frac{2 L}{\sqrt{c^{2}-v^{2}}} \tag{1.1}
\end{equation*}
$$

For the light traveling to Reflector R_{2}, when it is traveling towards the reflector its speed is $c+v$ relative to the interferometer, and when it is returning to the beam splitter its speed is $c-v$. Thus the total time is:

$$
\begin{equation*}
t_{2}=\frac{L}{c+v}+\frac{L}{c-v}=\frac{2 L c}{c^{2}-v^{2}} \tag{1.2}
\end{equation*}
$$

From Equations 1.1 and 1.2 it is fairly simple to show the Equation A. 1 is true.

Part B

The difference in times is

$$
\begin{equation*}
t_{2}-t_{1}=\frac{2 L c}{c^{2}-v^{2}}-\frac{2 L}{\sqrt{c^{2}-v^{2}}}=2 L\left[\frac{c}{c^{2}-v^{2}}-\frac{1}{\sqrt{c^{2}-v^{2}}}\right] \tag{1.3}
\end{equation*}
$$

Evaluating this can be a bit of a challenge for cheap calculators because the two terms in the square brackets have almost the same value. Here is a form which may work better for your calculator

$$
\begin{equation*}
t_{2}-t_{1}=\frac{2 L}{\sqrt{c^{2}-v^{2}}}\left[\frac{c}{\sqrt{c^{2}-v^{2}}}-1\right]=3.33 \times 10^{-16} \mathrm{~s} \tag{1.4}
\end{equation*}
$$

Alternatively we can use the fact that $(1-x)^{n} \approx 1-n x$ for small x to show that the time difference is approximately

$$
t_{2}-t_{1} \approx \frac{L v^{2}}{c^{3}} \approx 3.33 \times 10^{-16} \mathrm{~s}
$$

In terms of the phase difference, this is

$$
\begin{equation*}
\Delta \phi=2 \pi \frac{t_{2}-t_{1}}{T}=2 \pi f\left(t_{2}-t_{1}\right)=2 \pi \times 0.200 \mathrm{rads} \tag{1.5}
\end{equation*}
$$

Part C

This is just all of the above except that the labels 1 and 2 are interchanged. Thus we can immediately write the answer:

$$
\Delta \phi=-2 \pi \times 0.200 \mathrm{rads}
$$

Part D

Recall that when the phase difference is π we have complete destructive interference. Here we have gone from a phase difference of 0.400π through 0 (constructive interference) to -0.400π radians. This should be observable.

Problem 2

If the period of the source is T relative to Pablo, then the wavelength of the wave relative to him is

$$
\begin{equation*}
\lambda=(c+v) T \tag{2.1}
\end{equation*}
$$

But this period is the time dilated value. If the period of the source in a frame stationary relative to the source is T_{0}, then

$$
\begin{equation*}
T=\gamma T_{0}=\frac{1}{\sqrt{1-v^{2} / c^{2}}} T_{0} \tag{2.2}
\end{equation*}
$$

The wavelength of the wave in a frame stationary relative to the source, λ_{0}, is related to this period by

$$
\begin{equation*}
T_{0}=\frac{\lambda_{0}}{c} \tag{2.3}
\end{equation*}
$$

Thus Equation 2.1 becomes

$$
\begin{equation*}
\lambda=(c+v) \frac{1}{\sqrt{1-v^{2} / c^{2}}} \frac{\lambda_{0}}{c}=\sqrt{\frac{1+v / c}{1-v / c}} \lambda_{0} \tag{2.4}
\end{equation*}
$$

Problem 3

Let's start with the value of zero. This is just the value if a signal propagating at c travels from Event 1 to Event 2. Although this may be obvious, let's do the math

$$
\begin{equation*}
c^{2} \Delta t^{2}-\Delta x^{2}=0 \tag{3.1}
\end{equation*}
$$

Divide by Δt^{2}.

$$
\begin{equation*}
c^{2}-\left(\frac{\Delta x}{\Delta t}\right)^{2}=0 \tag{3.2}
\end{equation*}
$$

But $\frac{\Delta x}{\Delta t}$ is just the speed of a signal propagating from Event 1 to Event $2, v$, so:

$$
\begin{equation*}
v=c \tag{3.3}
\end{equation*}
$$

If the interval squared is greater than 0 , Eqn 3.2 becomes:

$$
\begin{equation*}
c^{2}-\left(\frac{\Delta x}{\Delta t}\right)^{2}>0 \tag{3.4}
\end{equation*}
$$

So

$$
\begin{equation*}
v<c \tag{3.5}
\end{equation*}
$$

This makes sense. If the two events occur at the same place at different times, the interval squared is positive.

If the interval squared is less than 0 , we get

$$
\begin{equation*}
v>c \tag{3.6}
\end{equation*}
$$

This also makes sense. If the two events occur simultaneously at different places, the interval squared is less than 0 , and a signal that connects them would have to move at infinite speed.

Problem 4

Part 1

If $u_{\text {Lou }}=v$, then f is 1 . This is reasonable: the particle doesn't move relative to the train and the light meets it at the rear of the train.

Part 2

If $u_{\text {Lou }}=c$, then f is 0 . This too is reasonable: the "race" ends in a tie.

Part 3

For Sue, the speed of light is $(c-v)$ when it is traveling to the front of the car and $(c+v)$ after it is reflected. Thus the equivalent of Eqn C. 4 is

$$
\begin{equation*}
u_{\text {Sue }}\left(t_{1, \text { Sue }}+t_{2, \text { Sue }}\right)=(c-v) t_{1, \text { Sue }}-(c+v) t_{2, \text { Sue }} \tag{4.1}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{t_{2, \text { Sue }}}{t_{1, \text { Sue }}}=\frac{(c-v)-u_{\text {Sue }}}{(c+v)+u_{\text {Sue }}} \tag{4.2}
\end{equation*}
$$

For Sue, the equivalents of Eqns. C. 5 and C. 6 are

$$
\begin{align*}
& (c-v) t_{1, \text { Sue }}=L_{\text {Sue }} \tag{4.3}\\
& (c+v) t_{2, \text { Sue }}=f L_{\text {Sue }}
\end{align*}
$$

Eliminate $L_{\text {Sue }}$, solve for f and use Eqn. 4.2 and we get

$$
\begin{equation*}
f=\frac{(c+v)}{(c-v)} \frac{\left(c-v-u_{\text {Sue }}\right)}{\left(c+v+u_{\text {Sue }}\right)} \tag{4.4}
\end{equation*}
$$

Equating this to Eqn. C. 7 we end up with

$$
\begin{equation*}
u_{\text {Sue }}=u_{\text {Lou }}-v \tag{4.5}
\end{equation*}
$$

This is the "common sense" result gotten by Galileo.

Problem 5

Energy is the time component of the vector 4-momentum. This answer is just from looking at the structure of the equation.

