"Pongileoni's bowing and the scraping of the anonymous fiddlers had shaken the air in the great hall, had set the glass of the windows looking on to it vibrating: and this in turn had shaken the air in Lord Edwards' apartment on the further side. The shaking air rattled Lord Edwards' membrana typani; the interlocked malleus, incus, and stirrup bones were set in motion so as to agitate the membrane of the oval window and raise an infinitesimal storm in the fluid of the labyrinth. The hairy endings of the auditory nerve shuddered like weeds in a rough sea; a vast number of obscure miracles were performed in the brain, and Lord Edwards ecstatically whispered 'Bach!’"
-- Aldous Huxley, Point Counter Point

Announcement

- Practicals begin today with P0601 (1-3 PM) \& P0701 (3-5 PM)
- For your 1st Practical:
- Go to the Practicals section of the course web site
- Print and bring Week 1 Student Guide
- Come to MP125
- Your name should appear on a list, telling you which room to go to

Last Time

- Finished the Doppler Effect
- Moving source, stationary observer:
$\mathrm{f}_{\text {wave }} \neq \mathrm{f}_{\text {source }}$
- Stationary source, moving observer:
$\mathrm{f}_{\text {observer }} \neq \mathrm{f}_{\text {wave }}$
- Reflection
- Fixed end: inverted
- Open end: not inverted
- Standing Waves: $D_{\text {tot }}=[2 a \sin (k x)] \cos (\omega t)$
- Sound Waves:

1. Displacement Wave 2. Pressure Wave

Today

- Finish Chapter 21
- §21.4 - Standing Sound Waves and Musical Acoustics
- §21.5 - Interference in One Dimension
- §21.6 - The Mathematics of Interference
- §21.7 - Interference in Two and Three Dimensions
- §21.8-Beats

A standing wave on a string vibrates as shown at the top. Suppose the tension is quadrupled while the frequency and the length of the string are held constant. Which standing wave pattern is produced?

(a)

B
(b)

C

(c)

D

(d)

No standing wave
E

Possible Standing Waves on a String

$m=1$	$f=440 \mathrm{~Hz}$	"concert A" $=A 4$
$m=2$	$f=880 \mathrm{~Hz}$	A one octave above A4 $=$ A5
$m=3$	$f=1320 \mathrm{~Hz}$	E6
$m=4$	$\mathrm{f}=1760 \mathrm{~Hz}$	A6
$\mathrm{m}=5$	$\mathrm{f}=2200 \mathrm{~Hz}$	C 77
$\mathrm{~m}=6$	$\mathrm{f}=2640 \mathrm{~Hz}$	E 7

All these are notes of the A chord (In a Pythagorean temperament)

History Graph of the Sound Produced by a Guitar and an Attempt to Synthesize It

$$
\begin{aligned}
& D_{1}\left(r_{1}, t\right)=a_{1} \sin \left(k r_{1}-\omega t+\phi_{10}\right)=a_{1} \sin \left(\phi_{1}\right) \\
& D_{2}\left(r_{2}, t\right)=a_{2} \sin \left(k r_{2}-\omega t+\phi_{20}\right) \\
& D_{2}^{\prime}\left(r_{2}, t\right)=a_{1} \sin \left(k r_{2}-\omega t+\phi_{20}\right)=a_{1} \sin \left(\phi_{2}\right) \\
& \phi_{2}-\phi_{1}=k\left(r_{2}-r_{1}\right)+\left(\phi_{20}-\phi_{10}\right) \\
& \Delta \phi=2 \pi \frac{\left(r_{2}-r_{1}\right)}{\lambda}+\Delta \phi_{0}
\end{aligned}
$$

Fig 21.32

The amplitude is slowly
modulated as $2 a \cos \left(\omega_{\text {mod }} t\right)$.

