From the Textbook (80%)

Chapter 1: 9, 16, 22, 64

Supplemental Problem (20%)

A vector has Cartesian coordinates of (4, 5), as shown.

\[\vec{A} = (x, y) = (4, 5) \]

The same vector can be completely specified in terms of its polar coordinates \(r \) and \(\theta \) where \(r \) is the magnitude of the vector and \(\theta \) is the angle it makes with the x axis.

\[\vec{A} = (r, \theta) = (6.40, 51.3^\circ) \]

Of course, the relation between these two coordinate system's representation of the vector is:

\[
\begin{align*}
 r &= \sqrt{x^2 + y^2} \\
 \theta &= \tan^{-1}\left(\frac{y}{x}\right)
\end{align*}
\]

A second vector \(\mathbf{B} \) has Cartesian coordinates (4, 2).

1. Express \(\mathbf{B} \) in polar coordinates.
2. Find \(\mathbf{A} + \mathbf{B} \) by adding the Cartesian coordinates. Express the answer in polar coordinates.
3. Add the polar coordinates of \(\mathbf{A} \) and \(\mathbf{B} \). Compare to answer 2.