Class	Major Topics	Textbook Reference
1 Mon. Sept. 13	 Introduction to PHY138: the structure of the course Assumptions of classical physics The role of everyday language and the language of mathematics 	None
2 Wed. Sept. 15	 Units Vectors Dimensional analysis Estimation Coordinate systems 	Chapter 1 - Introduction and Vectors §1.1 - §1.5 §1.7 Note: we will discuss §1.6 in a later class.
3 Mon. Sept. 20	 Scalars and Vectors Vector addition and subtraction Unit vectors Modeling and Problem Solving Speed, velocity, acceleration, distance, displacement. Using derivatives 	§1.8 - §1.11 Chapter 2 - Motion in One Dimension §2.1 - §2.2
4 Wed. Sept. 22	 Velocity, acceleration continued Freely falling bodies Projectile motion 	§2.3 - §2.7 Chapter 3 - Motion in Two Dimensions §3.1 - 3.3
5 Mon. Sept. 27	 Data and analysis of jumping frogs Uniform circular motion Tangential and Radial Acceleration Newton's Laws of Motion Ballistocardiogram 	§3.4, §3.5 Chapter 4 - The Laws of Motion §4.1 - §4.7

6 Wed. Sept. 29	 Centripetal force Nonuniform circular motion Fundamental forces of nature 	Chapter 5 - More Applications of Newton's Laws §5.2 - §5.3 §5.6
7 Mon. Oct. 4	 The gravitational field Work Scalar or dot product of 2 vectors Introduction to the integral sign Spring-mass system 	§5.7 Chapter 6 - Energy and Energy Transfer §6.1 - §6.4
8 Wed. Oct. 6	 Kinetic energy and its conservation <i>More about jumping frogs</i> Nonisolated systems Extend concept of energy and its conservation to other forms Power <i>Basal metabolic rate</i> 	§6.5 - §6.6 §6.8
9 Wed. Oct, 13	 Potential energy, mechanical energy Conservative and nonconservative forces Conservative forces and potential energy Potential energy for gravitational and electric forces Equilibrium and energy diagrams 	Chapter 7 - Potential Energy §7.1 - §7.7
10 Mon. Oct. 18	 Momentum and its conservation Impulse Collisions Damage caused to people in collisions 	Chapter 8 - Momentum and Collisions §8.1 - §8.4
11 Wed. Oct. 20	 Angular speed and acceleration Rotational kinematics Rotational kinetic energy: the moment of inertia 	Chapter 10 - Rotational Motion §10.1 - §10.4

12 Mon. Oct. 25	 Torque Vector or cross product Rigid bodies 	§10.5 - 10.7
13 Wed. Oct. 27	 Forces on the hip and femur Angular momentum and its conservation Rolling motion of rigid bodies 	§10.8 - §10.9 §10.11
14 Mon. Nov. 1	Review for the test	All of the above
15 Wed. Nov. 3	Error analysis: a laboratory topic	Nothing from the textbook, but we will discuss some of the material in §1.6 in a different way.

Last modified \$Date: 2004/10/23 11:01:08 \$ (y/m/d UTC)