Introduction

"I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."
-- Newton

2005 Nobel Prize in Physics

Roy Glauber (USA), John Hall (USA) and Theodore Haensch (Germany)

Quantum Optics
Quantum Optics Research Group at U of T:
Professors: S. John, H-K. Lo, R.
Marjoribanks, D. Miller, J. Sipe, A.
Steinberg, J. Thywissen, H. Van Driel
Plus: 13 Research Associates and 29 Graduate Students

Announcements

\square The PHY138 Mechanics home page neglected to list MP Problem Set \#6 - Chapter 13
\square It does now

- Due Friday October 28 by 5 PM
\square Drop-In Centre begins Tuesday next week:
- MP200 (2 $2^{\text {nd }}$ floor over the coffee stand)
- Monday - Thursday 10 AM - 2 PM
- Week before the test: Monday - Thursday 10 AM - 5 PM

FYI

Pre-Class Quiz Chapts 7-8

- Due last Monday, October 3
- The Newton's 3rd Law Question had a missing minus sign until mid-week. \square Everybody gets full credit for this question
- For the remaining 3 questions:
- Mean $=86.7 \%$

Today
$\square \S 7.6$ - Nonuniform Circular Motion

- This is what Tarzan is doing
\square Chapter 8 - Newton's $3^{\text {rd }}$ Law
- A series of related examples

2 Blocks Glued Together

$A \quad B \quad \mathrm{~F} \quad a=\mathrm{F} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)$
$F_{A \text { on } B}=m_{A} F /\left(m_{A}+m_{B}\right)$, to left
$F_{B \text { on } A}=m_{A} F /\left(m_{A}+m_{B}\right)$, to right

Figure 8.13

$$
a=F_{H} /\left(m_{A}+m_{B}\right)
$$

$F_{A \text { on } B}=m_{B} F_{H} /\left(m_{A}+m_{B}\right)$, to right
$F_{B \text { on } A}=m_{B} F_{H} /\left(m_{A}+m_{B}\right)$, to left

Mass of String $\mathrm{m}_{\mathrm{s}}>0$

$$
\vec{F}_{\mathrm{B} \text { on } \mathrm{S}} \neq-\overrightarrow{\mathrm{F}}_{\mathrm{A} \text { on } \mathrm{S}}
$$

$T=F_{S \text { on } B}=\left(m_{A}+m_{S}\right) F / m_{\text {tot }}$, left
$T^{\prime}=F_{S \text { on } A}=m_{A} F / m_{\text {tot }}$, right
$T>T^{\prime}$

