Introduction

"I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."

-- Newton

2005 Nobel Prize in Physics

Roy Glauber (USA), John Hall (USA) and Theodore Haensch (Germany)

Quantum Optics

Quantum Optics Research Group at U of T:
Plus: 13 Research Associates and 29 Graduate Students

Announcements

☐ The PHY138 Mechanics home page neglected to list MP Problem Set #6 – Chapter 13
☐ It does now
 ■ Due Friday October 28 by 5 PM
☐ Drop-In Centre begins Tuesday next week:
 ■ MP200 (2nd floor over the coffee stand)
 ■ Monday – Thursday 10 AM – 2 PM
 ■ Week before the test: Monday – Thursday 10 AM – 5 PM

FYI

☐ Pre-Class Quiz Chapt 7 – 8
 ■ Due last Monday, October 3
 ■ The Newton’s 3rd Law Question had a missing minus sign until mid-week.
 ■ Everybody gets full credit for this question
 ■ For the remaining 3 questions:
 ■ Mean = 86.7%

Last time

☐ Galilean Relativity
☐ Tarzan
☐ Uniform Circular Motion
 ■ Angular velocity $\omega = d\theta/dt$
 ■ r-t-z Coordinate System
 ■ v, constant; $a_\theta = 0$; $a_r = v^2/r$
☐ Fictitious forces
 ■ Arise whenever we try to analyse in a non-inertial reference frame.

Today

☐ §7.6 – Nonuniform Circular Motion
 ■ This is what Tarzan is doing
☐ Chapter 8 – Newton’s 3rd Law
 ■ A series of related examples
Linear Motion

\[a = \text{constant} \]

\[s_t = s_i + v_i t + \frac{1}{2} a t^2 \]

\[v_t = v_i + at \]

Rotational Motion

\[\alpha = \frac{\Delta \theta}{\Delta t} = \text{constant} \]

\[\theta_t = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2 \]

\[\omega_t = \omega_i + \alpha t \]

Figure 8.13

\[a = \frac{F}{(m_A + m_B)} \]

\[F_{A_{on B}} = m_B F / (m_A + m_B), \text{ to right} \]

\[F_{B_{on A}} = m_B F / (m_A + m_B), \text{ to left} \]

2 Blocks Glued Together

\[a = \frac{F}{(m_A + m_B)} \]

\[F_{A_{on B}} = m_A F / (m_A + m_B), \text{ to left} \]

\[F_{B_{on A}} = m_A F / (m_A + m_B), \text{ to right} \]

Massless String S

\[T = F_{S_{on B}} = m_A F / (m_A + m_B), \text{ left} \]

\[T' = F_{S_{on A}} = m_A F / (m_A + m_B), \text{ right} \]

Mass of String \(m_S > 0 \)

\[F_{B_{on S}} \neq - F_{A_{on S}} \]

\[T = F_{S_{on B}} = (m_A + m_B)F / m_{tot}, \text{ left} \]

\[T' = F_{S_{on A}} = m_A F / m_{tot}, \text{ right} \]

\[T > T' \]