Introduction

Newton on his bitter rival Hooke:

"This carriage towards me is very strange \& undeserved, so that I cannot forbeare in stating that point of justice to tell you further ... he should rather have excused himself by reason of his inability. For tis plain by his words he knew not how to go about it."

Syllabus Change

Drop $\$ 13.8$ - Rolling MotionInclude the Angular Velocity Vector sub-section of $\S 13.9$.

- The rest of this section continues to be dropped
\square Mechanics Home Page and Syllabus pdf have been updated

Coming Up

This week: finish Chapt. 11 Work and discuss Chapt. 13 Rotation of a Rigid BodyMonday October 31: review for the test

- The pdf of the PowerPoint will be released this WednesdayTuesday November 1,6-7:30PM: TestWednesday November 2: Dr. Harlow \& I will discuss a laboratory topic: Error Analysis
- Monday November 7: Waves Section with Dr Harlow begins

Test \#1

Reminder: if you have a conflict with Tuesday November 1, 6:00-7:30 PM today is the last day to see Dr. Savaria or Ms. Seeley in MP129
\square Format set:

- 8 Multiple-Choice questions worth 8 marks each
- 1 Long Answer with 6 Parts (36 marks total)
\qquad

Last Time $1 / 2$

- Dot Product
$W_{\text {net }}=\Delta K$ alwaysSprings
- $F_{s}=-k s$
- $\mathrm{U}_{\mathrm{s}}=1 / 2 \mathrm{ks}^{2}$

Last Time $2 / 2$

\square Conservative Forces (gravity, springs):

- W independent of path
- Potential for work to be done: potential energy U
- $W=-\Delta U$
- $E_{\text {mech }}=K+U$ conserved
- $\mathrm{F}_{\mathrm{x}}=-\mathrm{dU} / \mathrm{dx}$
\square Non-Conservative Forces (friction):
- W depends on path
- U can not be defined
\square Isolated System: $E_{\text {tot }}$ always conserved
- Heat is a form of energy (Mayer, 1842): observed the color of blood of people in Europe and Indonesia

Today

\square Power

- Basal Metabolism
\square Rotational Kinematics
\square Centre of MassTorque

Metabolism

\square Basal (Resting) Metabolic Rate (bmr)
\square Body radiates energy at a rate: $\mathrm{dE} / \mathrm{dt}$
\square At equilibrium: $b m r=d E / d t$
\square Surface area $A: d E / d t=k A$
\square Dimensional analysis for mass m : $\mathrm{bmr}=\mathrm{cm}^{2 / 3}$
\square Experimentally: $\mathrm{bmr}=\mathrm{cm}^{3 / 4}$
Figure 13.18

