PHY138Y - Review for Test 1

October 31, 2005

Our approach has many times spiraled through the material.

Today we will put many pieces together.
Therefore, this review will not always be in the order in which we did things in class.

Reminders:

\square You must bring:

- Your student card
- A dark-black soft-lead pencil

The test is closed bookYou may bring:

- $81 / 2 \times 11$ inch sheet of paper on which you have written anything that you wish
- A non-programmable calculator without text storage or communication abilities
By design the test is "hard"

Format

8 Multiple Choice Questions

- Correct answers get 8 marks
- Incorrect answers get 0 marks
- Non-answered questions get 0 marks
- Multiple answers get 0 marks
$\square 1$ Long Answer Question with 6 Parts (36 marks total)
- Some partial credit given
- Be sure to show your work

"Examsmanship"

\square Answer the question you are asked

- Some students insist on answering questions that are not being asked
\square Multiple-Choice
- Are some answers obviously wrong?
\square Being calm and confident will allow you to do your bestThe "last minute cram" makes it much harder to be calm and confident
- The cram is proven not to work in physics

Assumptions of Classical Physics

\square The world is mechanistic, a "clockwork"The world is continuousThe world is describable by mathematical Laws
\square The description includes:

- Everyday words with precise defns
- Operational Definitions
\qquad

Visualisation

\square Choose coordinate system

- "Reference Frame"
- In principle arbitrary
\square Define the system and the environment
\square Graphs
\square Motion Diagrams
\square Free Body Diagrams
Momentum Bar Charts
Energy Diagrams

Problem Solving

\square Model

Visualise

- Pictorial, physical \& graphical
\square Guess the answer
\square Solve
- If numeric, put in numbers last

Assess

Where is the object?

Displacement (vector) vs. Distance
(scalar)Position vector $\overrightarrow{\mathrm{r}}$
\square If the object moves:

- Displacement vector $\Delta \vec{F}$
\qquad

Accelerations

\square Constant

- Free fallNon-constant
- Uniform Circular Motion
- Non-uniform Circular Motion: Tarzan
- Spring-mass

Free Fall

\square Projectile
\square Weight $\mathbf{w}=\mathrm{m} \mathbf{g}$
\square Accelerating Reference Frames

- "Non-inertial" - Newton's Laws not true
- Apparent weight $\mathrm{w}_{\text {app }}=\mathrm{w}\left(1+\mathrm{a}_{\mathrm{y}} / \mathrm{g}\right)$
- Einstein: acceleration equivalent to gravitation
\square Gravitational Field

1. M causes a field \mathbf{E}_{9}
2. \mathbf{E}_{g} causes a force on m placed in it

Circular Motion

\square Centripetal Acceleration: $\frac{v^{2}}{r} \hat{r}$
ㅁ Uniform:

- $a_{\text {tangential }}=0$
\square Non-uniform:
$\square a_{\text {tangential }} \neq 0$

Work \& Energy

\square Isolated System: Total Energy Conserved
\square Non-isolated System:

- Work:

- Kinetic Energy: $K=\frac{1}{2} m v^{2}$
$W_{\text {net }}=\Delta K$ always
$F_{x}=d W / d x$
Elastic Collisions: K Conserved

Impulse \& Momentum

\square Impulse: $\vec{J}=\int_{t_{1}}^{t_{2}} \overrightarrow{\vec{F}}$ dlt $=\Delta \overrightarrow{\mathrm{p}}$
\square Isolated system: momentum conserved
\square All collisions: momentum conserved
\square Damage to people in collisions:

- $\Delta t<100 \mathrm{~ms}$: Impulse
- $\Delta \mathrm{t}>100 \mathrm{~ms}: \mathrm{a}=\mathrm{F}_{\text {net }} / \mathrm{m}$

Potential Energy

\square Conservative Forces

- W independent of path
- The potential for work to be done: U \square Arbitrary posn. where $U=0$
- $W=\Theta \Delta U$
- $E_{\text {mech }}=K+U$ conserved
- $F_{x}=\Theta d U / d x\left(\right.$ From $\left.F_{x}=+d W / d x\right)$
\square Non-conservative Forces
- U can not be defined

Rotational Kinematics

Rigid Body: θ a Same value for all points
\square Both: $\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}} \quad \alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}$$\begin{aligned} \alpha=\text { constant } \theta_{i} & =\theta_{1}+\omega_{1} t+\frac{1}{2} \alpha t^{2} \\ s_{i} & =s_{i}+v_{i} t+\frac{1}{2} a t^{2}\end{aligned}$

$$
s_{i}=s_{i}+v_{i} t+\frac{1}{2} a t^{2}
$$

\qquad

Centre of Mass (cm)
Isolated Rigid Body: rotates about its centre of mass

$$
\overrightarrow{\mathrm{r}}_{\mathrm{em}}=\frac{1}{M} \int \overrightarrow{\mathrm{I}} \mathrm{dm}
$$

Signs and Vectors for Rotational Quantities
\square Counter-clockwise rotations: positive
\square Clockwise rotations: negativeAngular velocity vector:

- Lies along axis of rotation
" "Right hand screw" rule determines the direction.

