von Neumann: father of computer science.

CHAPTER 2

§2.1 - 1. dimension done it

§2.2 - Uniform motion

\[\overrightarrow{a} = \frac{\overrightarrow{v}}{\Delta t} = 0 \]

1 dimension, generic direction \(S \).

\[v_s = \frac{\Delta s}{\Delta t} \]

§2.3 - Instantaneous Velocity

\[v_{s, \text{avg}} = \frac{\Delta s}{\Delta t} \]
\[v_{\text{inst}} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt} \]

- slope at tangent on \(s-t \) graph.

Direct measurement of \(v_{\text{avg}} \)

World is continuous.

Math - talk - distance must differentiable everywhere

\[
\begin{cases}
\text{§2.4 - Posn from Velocity} \\
\text{§2.5 - Const. Accel} \\
\end{cases}
\]

\[s \]

\[t \]

tangent

slope = \frac{ds}{dt} = v_{\text{inst}} +
Subsection "A Little More Calculus: Integrals"

Finding area under curves

Integration! Language

\[\{ \section{5.25 - Const Accel} \]
\[\section{5.26 - Free Fall} \]
\[a_3 = \text{constant} \]
\[v_{yiF} = v_{yi} + a_3 t \]
\[S_f = S_i + v_{ys} t + \frac{1}{2} a_3 t^2 \]

Free Fall

\[a_y = -g \]
\[g = 9.80 \text{ m/s}^2 \]

Section 2.2 - Inclined Plane

Use radian measure.
\[a_s = g(\theta) \text{ - continuous} \]

\[\text{simplest function} \quad a = g \sin(\theta) \]

Brief review of Vectors

Useful notation: \(\hat{i}, \hat{j}, \hat{k} \)

\[x \hat{i}, y \hat{j}, z \hat{k} \]

"hat" \(\hat{\cdot} \) \(\equiv \) vector of length 1