Introduction

"Things should be made as simple as possible, but not any simpler."

-- Einstein

Announcments

- My office hour this Friday, October 13, is cancelled
- Reminder: written homework due by 5 PM Friday October 13 in the Drop Box for your tutorial
- Pre-Class Quiz \#5 available
- Due by 10 AM Monday October 16
- Chapters 10 - 11
- Lab Questions: direct to Dr. Deyirmenjian
- I have forwarded all emails about the lab to him

Representative Assembly

Studies: up to 80% of difficulties students have with their courses relate to communication not content

- Representative Assembly: to discuss issues of communication and organisation of PHY138
- We will not discuss Physics
- Each tutorial group will choose a representative
- Friday October 20, 3 - 4 PM, MP222
- $2^{\text {nd }}$ Floor - North Wing - McLennan

Class Time: a Limited Resource

A. "Value Added": Problem Solving Strategy, Study Techniques, etc.
B. Discussing Physics Content
C. Examples
D. Clicker Questions
E. Questions from the class via GuoYing

Doing more of one of these means less time for the others
Doing less of one of these means more time for the others

Last Time

- Fictitious Forces
- Only arise in non-inertial ("accelerating") reference frames
- Non-uniform circular motion
- $a_{\mathrm{t}} \neq 0$
- $\mathrm{v}_{\mathrm{t}} \neq$ constant
- Newton's Third Law
- Example 8.3 from the text
- I will review this example in a moment

Today

- A series of examples extending Example 8.3
- Application: Ballistocardiogram
- Chapter 9: Impulse and Momentum

2 Blocks Glued Together

$\left.\begin{array}{l}\mathrm{F}_{\mathrm{A} \text { on } \mathrm{B}}=\mathrm{m}_{\mathrm{A}} \mathrm{F} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right), \text { to left } \\ \mathrm{F}_{\mathrm{B} \text { on } \mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{F} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right) \text {, to right }\end{array}\right\}$ 3rd Law

1. System: both masses \rightarrow acceleration
2. System: single mass \rightarrow forces acting on it

Massless String S

$a=F /\left(m_{A}+m_{B}\right)$
$\vec{F}_{B \text { on } S}=-\vec{F}_{A \text { on } S}$

1. System: both masses \rightarrow acceleration

Massless String S

$$
a=F /\left(m_{A}+m_{B}\right)
$$

$$
\stackrel{\rightharpoonup}{F}_{\mathrm{B} \text { on } \mathrm{S}}=-\overrightarrow{\mathrm{F}}_{\mathrm{A} \text { on } \mathrm{S}} \quad \text { Not 3rd Law! }
$$

$$
T=F_{S \text { on } B}=m_{A} F /\left(m_{A}+m_{B}\right) \text {, left }
$$

$$
T^{\prime}=F_{\text {Son } A}=m_{A} F /\left(m_{A}+m_{B}\right) \text {, right }
$$

1. System: both masses \rightarrow acceleration
2. System: single mass \rightarrow forces acting on it

Mass of String $m_{s}>0$

$$
\mathrm{a}=\mathrm{F} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}+\mathrm{m}_{\mathrm{S}}\right)
$$

$$
\overrightarrow{\mathrm{F}}_{\mathrm{B} \text { on } \mathrm{S}} \neq-\overrightarrow{\mathrm{F}}_{\mathrm{Aon} \mathrm{~S}}
$$

$$
\mathrm{T}=\mathrm{F}_{\mathrm{Son} \mathrm{~B}}=\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{S}}\right) \mathrm{F} / \mathrm{m}_{\mathrm{tot}}, \text { left }
$$

$$
\mathrm{T}^{\prime}=\mathrm{F}_{\text {Son } \mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{~F} / \mathrm{m}_{\text {tot }} \text {, right }
$$

T > T'

Newton's Laws in Compact Form

- Second Law

$$
\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{p}}=\stackrel{\rightharpoonup}{\mathrm{F}}_{\text {net }} \mathrm{dt} \quad \stackrel{\rightharpoonup}{F}_{\text {net }}=\frac{\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{p}}}{\mathrm{dt}}
$$

- Third Law

$$
\overrightarrow{\mathrm{F}}_{\mathrm{A} \text { on } \mathrm{B}}=-\overrightarrow{\mathrm{F}}_{\mathrm{B} \text { on } \mathrm{A}}
$$

This is all of classical mechanics!

Figure 9.4 (a)

