Introduction

Newton on his bitter rival Hooke:

"This carriage towards me is very strange & undeserved, so that I cannot forbeare in stating that point of justice to tell you further ... he should rather have excused himself by reason of his inability. For tis plain by his words he knew not how to go about it."

Rep. Assy: Organisation and Web Sites • Overall organisation: Dr. Savaria • Mechanics: me • Waves: Dr. Harlow • E & M: Prof. Strong • Nuclear & Radiation: Prof. Key • Dr. Deyirmenjian We each maintain the web pages for our own parts of PHY138 Bookmarks or "My Favorites" can help you organise all the web pages for all your courses

Last Time 1/2

- Springs
 - Hooke's Law: F_x = -kx
 - U = ½ k x²
- · Elastic Collisions: K is conserved

• Work:
$$\mathbf{W} = \int_{\mathbf{a}_1}^{\mathbf{a}_2} \mathbf{\vec{r}} \cdot d\mathbf{\vec{s}}$$

- $W_{net} = \Delta K = -\Delta U$
- Potential Energy: the potential for work to be done

Last Time 2/2

- Conservative and Non-conservative forces
 Potential Energy can only be defined for conservative forces
- $F_s = dW/ds = dU/ds$
- To maximise the work for a constant force: maximise ∆s
 - Jumping organisms have long legs

Rep Assy: some discussion about whether these reviews are worthwhile. Most felt that they are.

Coming Up

- Today and Wednesday:
 - Finish Chapter 11 Work
 - Application: metabolic rates
 - <u>Chapter 13 Rotation of Rigid Bodies</u>
- Next Monday: Test Review
 - The PowerPoint slides will be available via Wednesday's Class summary
- Tuesday October 31 6:10 7:30 PM: Test
- Next Wednesday November 1: Error Analysis
 Me and Dr. Harlow

Rep. Assy: Two More Things

- Please think through a question before writing it down and having Guoying bring to me
- Suggested Problems Chapter 13: 47, 53, 56, 58

	Animal	Mass (kg)	Basal Metabolic Rate (Watts)
Basal [Resting] Metabolic Rates (BMR)	Dove	0.16	0.97
	Rat	0.26	1.45
	Pigeon	0.30	1.55
	Hen	2.0	4.8
	Dog (female)	11	14.5
	Dog (male)	16	20
	Sheep	45	50
	Woman	60	68
	Man	70	87
	Cow	400	266
	Steer	680	411

About Heat

- Previously thought to be a *fluid*: "caloric"
- Mayer (1842):
 - People in warm climates consume less
 oxygen, i.e. need to produce less energy
 - They have a lower Basal Metabolic Rate
- First realisation that heat is a form of energyJoule (1847): a classic experiment "Mechanical
- Joure (1847): a classic experiment "Mechanical Equivalent of Heat"
 - Available in the lab

	Animal	Mass (kg)	Basal Metabolic Rate (Watts)
Basal [Resting] Metabolic Rates (BMR)	Dove	0.16	0.97
	Rat	0.26	1.45
	Pigeon	0.30	1.55
	Hen	2.0	4.8
	Dog	11	14.5
	(female)		
	Dog (male)	16	20
	Sheep	45	50
	Woman	60	68
	Man	70	87
	Cow	400	266
	Steer	680	411

