Error Analysis

"To err is human; to describe the error properly is sublime."

- Cliff Swartz (1999)

Two Kinds of Statements

1. Exact

- $2+3=5$ (math)
- $\mathrm{K}=1 / 2 m v^{2}$ (definition)

2. Approximate

- $\mathrm{F}_{\text {spring }}=-\mathrm{kx}$ (any physical law)
- $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ (all numerical measures of the universe)

Today: approximate statements

Today

- A discussion about a laboratory topic: error analysis
- Your learning of this:

1. The assignment
2. Using error analysis in an experiment
3. This talk
4. A test (administered via computer)

Coming Next Week...

- We will begin the Waves Quarter on Oscillations, Sound and Light.
- For Monday, please read Sections 14.1 through 14.3 of Knight.
- There is a Pre-Class Quiz (Waves \#1) on Chapter 14 due Monday morning on www.masteringphysics.com.

Random Walk

Where does an object end up, if it takes N steps randomly left or right?
The final distribution is described by a Gaussian function!

The t_{5} data

$7.53 \mathrm{~s} \pm 0.06 \mathrm{~s}$	Numerically:
$7.38 \mathrm{~s} \pm 0.06 \mathrm{~s}$	$\overline{\mathrm{t}}_{5, \text { est }}=7.45250 \mathrm{~s}$
$7.47 \mathrm{~s} \pm 0.06 \mathrm{~s}$	$\sigma_{\text {est }}=0.0634429 \mathrm{~s}$
$7.43 \mathrm{~s} \pm 0.06 \mathrm{~s}$	
	$\sigma_{\text {est }}=0.06 \mathrm{~s}$

Propagation of Errors

Repeated Measurements
- Repeated \mathbf{n} times
- Each individual measurement has an
error of precision $\Delta \mathbf{x}$
:---:
$\Delta \bar{x}_{\text {est }}=\frac{\Delta \mathbf{x}}{\sqrt{\mathbf{n}}}$

[^0]
[^0]: Significant Figures

 - Discussed in Section 1.9 of Knight Ch. 1
 - Rules for significant figures follow from error propagation
 - Assume error in a quoted value is half the value of the last digit.
 - Errors should be quoted to 1 or 2 significant figures
 - Error should be in final displayed digit in number.
 - Example: If a calculated result is: (7.056 ± 0.705) m, it is better to report: (7.1 ± 0.7) m.

