## When DH tried to measure the time for 5 oscillations, $t_{5}$, was anything wrong with his procedure?

A. No
B. Yes, he should have counted "Zero" when he started the stopwatch
C. Yes, he should have started and stopped the stopwatch when the pendulum was at its maximum amplitude, not at the bottom of its swing

## We have repeated measurements <br> of some quantity

We assume that the distribution of the repeated measurements is "normal" i.e. that repeating an infinite number of times would give a Gaussian histogram. You choose one of the measurements randomly. What is the probability that it lies within one standard deviation $\sigma$ of the true value of the mean?
A. $0 \%$
B. $50 \%$
C. $68 \%$
D. $95 \%$
E. $100 \%$

## The result of measuring the time for five oscillations, t5, was:

 measurement, i.e. in 7.53 s :A. 0.005 s
B. 0.05 s
D. 5 s
C. 0.5 s
E. Impossible to determine

