Problem Set \#2 Solutions

1. We have $r \cos \left(\theta-\theta_{0}\right)=r\left[\cos \theta \cos \theta_{0}+r \sin \theta \sin \theta_{0}\right]=r_{0}$. Defining
$\left(x_{0}, y_{0}\right)=\left(r_{0} \cos \theta_{0}, r_{0} \sin \theta_{0}\right)$ and $(x, y)=(r \cos \theta, r \sin \theta)$, we have $r_{0}^{2}=x x_{0}+y y_{0}$. This is the equation for a line with y-intercept $y_{\mathrm{int}}=\frac{r_{0}^{2}}{y_{0}}=\frac{r_{0}}{\cos \theta_{0}}$. Note that we can also re-write the equation as $r_{0}^{2}=(x, y) \bullet\left(x_{0}, y_{0}\right)$,where $A \bullet B$ denotes dot product. Hence, the projection of the vector (x, y) onto the vector from the origin to the fixed point is of the length r_{0}, and hence the fixed point is the closest point to the origin. Alternatively, from the equation of the line in polar co-ordinates, the secant function has its minimum value (unity) when $\theta=\theta_{0}$. This gives the minimum value of $r=r_{0}$. Hence the minimum distance of the line from the origin occurs for the fixed point.
2. The motion in the (x, y) plane is a circle while that in the z -direction is translational.

The path is usually called a "spiral" or a "helix". At $t=1.5 \mathrm{~s}$,
$\vec{r}=(\cos (4.5), \sin (4.5), 13.5)=(-0.21,-0.98,13.5)$. Hence
$\left|\vec{r}-\vec{r}_{0}\right|=\sqrt{(\cos (4.5)+1)^{2}+(\sin (4.5)-2)^{2}+13.5^{2}}=14 m$. From the $2^{\text {nd }}$ derivative of the position vector, $\vec{a}=(-9 \cos (3 t),-9 \sin (3 t), 12)=(1.9,8.8,12)$. Note that $r(t=1.5)=13.5$, and $a(t=1.5)=15$ (mks units). If the angle between the position and acceleration vectors is θ, then $\cos \theta=\frac{\vec{a} \bullet \vec{r}}{a r}=\frac{1.5 \times 10^{2}}{15 * 13.5}=0.74$. Hence, $\theta=0.74 \mathrm{rad}$ (numbers are an unintended coincidence!). The speed of the proton is given by
$v=|\vec{v}(t)|=\sqrt{(-3 \sin (3 t))^{2}+(3 \cos (3 t))^{2}+(12 t)^{2}}=\sqrt{9+144 t^{2}}$. You can minimize this by setting the $1^{\text {st }}$ derivative to zero, etc. or note by inspection that the minimum occurs for t $=0$, and gives a minimum speed of $3 \mathrm{~m} / \mathrm{s}$.
3. Let the speed and the launch angle of the ball be v_{0} and θ_{0} respectively. Setting the origin at the launch point let the hill be given by $y=\tan \left(15^{\circ}\right) x$ and the trajectory of the ball until it hits the hill be $(x, y)=\left(v_{0} \cos \left(\theta_{0}\right) t,-\frac{g}{2} t^{2}+v_{0} \sin \left(\theta_{0}\right) t\right)$ where time is measured from launch. If t_{h} is the landing time t_{h} corresponding to point $\left(x_{h}, y_{h}\right)$ then $y_{h}=v_{0} \cos \left(\theta_{0}\right) t_{h} \tan \left(15^{0}\right)=-\frac{g}{2}\left(t_{h}\right)^{2}+v_{0} \sin \left(\theta_{0}\right) t_{h}$ or $t_{h}=\frac{2 v_{0}}{g}\left(\sin \left(\theta_{0}\right)-\cos \left(\theta_{0}\right) \tan \left(15^{0}\right)\right)$ and $x_{h}=2 \frac{v_{0}^{2}}{g}\left(\sin \left(\theta_{0}\right) \cos \left(\theta_{0}\right)-\left(\cos \left(\theta_{0}\right)\right)^{2} \tan \left(15^{0}\right)\right)$. $x_{h}\left(\right.$ and $\left.y_{h}\right)$ are maximal if $\frac{d x_{h}}{d \theta_{0}}=2 \frac{v^{2}}{g}\left(\cos \left(2 \theta_{0}\right)+\sin \left(2 \theta_{0}\right) \tan \left(15^{0}\right)\right)=0$ or $-\cot \left(15^{\circ}\right)=\tan \left(2 \theta_{0}\right) ; \quad \theta_{0}=53^{0}(0.93 \mathrm{rad})$. Since $t_{h}=4 \mathrm{~s}, v_{0}=31 \mathrm{~m} / \mathrm{s}$. At $t_{h}=3 \mathrm{~s}$, we have
$3=\frac{2(31)}{g}\left(\sin \left(\theta_{0}\right)-\cos \left(\theta_{0}\right) \tan \left(15^{0}\right)\right)$ or $\theta_{0}=42^{0}(0.73 \mathrm{rad})$. Hence,
$x_{h}=31 \cos (0.73) 3=70 \mathrm{~m}$. hence the distance up the incline is $\frac{x_{h}}{\cos \left(15^{0}\right)}=72 \mathrm{~m}$
4. Choose the x -axis along sea level and the y -axis to pass through the peak of the mountain. Let $\left(x_{B}, 0\right), x_{B} \leq-1 \mathrm{~km}$ be the location of ship B , and let θ_{0} be the launch angle for the projectile. If v_{0} is the muzzle speed, the trajectory is given by $(x, y)=\left(x_{B}+v_{0} \cos \left(\theta_{0}\right) t,-\frac{g}{2} t^{2}+v_{0} \sin \left(\theta_{0}\right) t\right)$. In the absence of obstructions the horizontal range of the projectile is $R=v_{0}^{2} \sin \left(2 \theta_{0}\right) / g$. However, the projectile must clear the peak. If t_{p} is the time it takes to reach the horizontal location of the peak, then $x_{B}+v_{0} t_{p} \cos \left(\theta_{0}\right)=0$. At that time, the height of the projectile
is $y_{P}=-\frac{g}{2}\left(\frac{x_{B}}{v_{0} \cos \theta_{0}}\right)^{2}-\tan \left(\theta_{0}\right) x_{B} \geq 1000$ or $\frac{g}{2} x_{B}^{2}+\frac{v_{0}^{2}}{2} \sin \left(2 \theta_{0}\right) x_{B}+1000 v_{0}^{2} \cos ^{2}\left(\theta_{0}\right) \leq 0$.
Or, substituting values for g and v_{0} we have $5 x_{B}^{2}+\frac{v_{0}^{2}}{2} \sin \left(2 \theta_{0}\right) x_{B}+1000 v_{0}^{2} \cos ^{2}\left(\theta_{0}\right) \leq 0$..
Since the maximum (unobstructed) range is 9 km (for $\theta_{0}=\pi / 4$), but this does not satisfy the above inequality (projectile doesn't clear peak) we must use a steeper angle. Larger launch angles reduce R, bringing the projectile closer to the (far) shore. The largest angles are obtained when ship B is closest to the shore or $x_{B}=-1000 \mathrm{~m}$. Hence for v_{0} $=0.3 \mathrm{~km} / \mathrm{s}$ we have $1-9 \sin \left(2 \theta_{0}\right)+18 \cos ^{2}\left(\theta_{0}\right) \leq 0$. This gives (trying different values) $50^{\circ}<\theta_{0}<86^{0}$ and $1.3 \mathrm{~km}<R<8.8 \mathrm{~km}$ or, to a single significant digit, boat A must hug the shore to be safe.

