Lecture 1	James Clerk Maxwell - 1831-1879
History, Tools and a Roadmap	 Born in Edinburgh, Scotland 13 November 1831 14 India Street Died 5 November 1879 Declared redundant from U of Aberdeen in 1860 1st Cavendish Professor of Physics at Cambridge 1871 Treatise on Electricity and Magnetism published in 1873 http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Maxwell.html
<section-header></section-header>	 Contributions to Science Maxwell's Equations!! Predicted Electromagnetic Waves Colour in photography Kinetic Theory Planimeter (mechanical integration machine) Repeated experiments of Cavendish Advocate of the telephone

Where to M.Es Come From?

- Gauss Law for electric fields
- Integral of the normal component of the electric field is proportional to the total charge enclosed:
- $Int[E.dS] = \Sigma q / \varepsilon_0 = Int[\rho dv] / \varepsilon_0$
- Use Gauss's theorem to relate surface integral to volume integral:
- $Div[E] = \rho / \epsilon_0$
- BUT must include the polarisation charges (if any)
- Define the polarisation field as P

Electrostatics

- Including dielectric media
- Div[$\varepsilon_0 \mathbf{E}$] = Div[**P**] + ρ
- In free space (no material) P = 0
- $\varepsilon_0 = 10^{-9}/(36\pi)$ in SI units
- Do we often have material (P # 0)? Yes
- Do we often have free charges (ρ # 0)? No

Static Magnetic Fields

- Very similar to electrostatic fields
- Div[H] = 0
- There are no free monopoles (I think!)
- BUT must include the Magnetisation M
- Div[H] = -Div[M]
- Do we often have magnetic materials (M # 0)?
 - All materials polarise to some extent
 - Only some magnetise significantly

Changing Magnetic Fields - Faraday

- Relates a changing magnetic field to a potential
- V = d/dt (N) (Faraday)
- N is measured in Webers
- but...
- V = Int[E . ds] (electrostatics)
- and...
- N/µ₀ = Int[(H + M) . dS] (electromagnetics)
- SO...
- Int[E . ds] = -µ₀ ∂/∂t Int[(H + M) . dS]
- = Int[Curl[E] . dS]
- Curl[E/ μ_0] = $\partial/\partial t$ (H) $\partial/\partial t$ (M)
- µ₀ relates the electric and magnetic unit systems
- $\mu_0 = 4\pi \cdot 10^{-7}$ in SI units

Continuity	Ampere's Law
 Since current is charge in motion Div[J] = - ∂/∂t (ρ) Charge is conserved - confirmed by experiment!! 	 The integral of the normal component of H round any closed boundary is proportional to the integral of the normal component of current on any surface with that boundary Cint[H . ds] = Int[J . dS] by Stoke's theorem Curl[H] = J (Ampere's Law) BUT Div[Curl[]] = 0 SO Div[J] = 0 which isn't true!! TROUBLE!! - Ampere was wrong!
Maxwell's Contribution	Maxwell's Equations
 Div[J] = -∂/∂t (p) Div[J] = -∂/∂t (Div[e₀ E] + Div[P]) Div[J + ∂/∂t (e₀ E) + ∂/∂t (P)] = 0 Above satisfies continuity SO CHANGE AMPERE'S LAW!! instead of Curl[H] = J write Curl[H] = ∂/∂t (e₀ E) + ∂/∂t (P) + J then Div[Curl[H]] = 0 as required The proof of the pudding is in the eating!! 	• $\text{Div}[\varepsilon_0 \mathbf{E}] = - \text{Div}[\mathbf{P}] + \rho$ • $\text{Div}[\mu_0 \mathbf{H}] = - \text{Div}[\mu_0 \mathbf{M}]$ • $\text{Curl}[\mathbf{E}] = - \partial/\partial t (\mu_0 \mathbf{H}) - \partial/\partial t (\mu_0 \mathbf{M})$ • $\text{Curl}[\mathbf{H}] = \partial/\partial t (\varepsilon_0 \mathbf{E}) + \partial/\partial t (\mathbf{P}) + \mathbf{J}$ • $\mu_0 = 4\pi \cdot 10^{-7}$ in SI units • $\varepsilon_0 = 10^{-9}/(36\pi)$ in SI units

Drummond's Observations

- $\text{Div}[\epsilon_0 \mathbf{E}] = \text{Div}[\mathbf{P}] + \rho$
- $\text{Div}[\mu_0 \text{ H}] = \text{Div}[\mu_0 \text{ M}]$
- $\begin{array}{l} Curl[\textbf{E}] = \partial / \partial t \left(\begin{array}{c} \mu_0 \end{array} \textbf{H} \right) \partial / \partial t \left(\begin{array}{c} \mu_0 \end{array} \textbf{M} \right) \\ Curl[\textbf{H}] = \partial / \partial t \left(\begin{array}{c} \varepsilon_0 \end{array} \textbf{E} \right) + \partial / \partial t \left(\begin{array}{c} \textbf{P} \end{array} \right) + \textbf{J} \end{array}$
- Maxwell's equations are linear (usually)
- Principle of superposition applies
- Linear Systems Analysis is possible

Toolkit Required

- Vector algebra
- (partial) differential equations
- Complex representation of oscillatory quantities
- Linear Systems Analysis
- Fourier series and Fourier transforms