Lecture 4	ME Monochromatic Wave Eqn Del2 [H]] + $\omega^2 \mu \varepsilon H$ + i $\omega \mu \sigma H$ = 0
A Model for Dielectrics, Metallic Conductors and Plasmas	 Del2[<i>E</i>]] + ω²με<i>E</i> + iωμσ<i>E</i> = 0 μ₀ = 4π . 10⁻⁷ in SI units ε₀ = 10⁻⁹/(36π) in SI units If we now REDEFINE ε as being ε + iσ/ω, we can automatically incorporate conducting media in the solutions with a complex dielectric constant This implies that the effect of conductance is the the polarisation P is still proportional to the field E, but there is a phase lag between the field and the polarisation We can also look at the same arguments for the spatial differential Del2[] and find that in a charge-free medium Del2[X] = -k² X where k is the wave vector
Dispersion Relation	n and e
 Putting all these components into the wave equation, we find that k² = ω² ε μ for a linear, isotropic, charge-free medium Remember that ε is generally complex and therefore so is k If we define refractive index to be complex following ε, then k² = ω²/c². n² This is the "dispersion relationship" and measures how 	 Most materials are non-magnetic, assume μ=μ₀ ε = ε_r + i ε_i = n² ε₀ So if n = n_r + i n_i Then ε_r / ε₀ = n_r² - n_i² And ε_i / ε₀ = 2 n_r n_i What's the point? We can measure the refractive index very easily therefore we can relate the macroscopic n to the microscopic, complex ε

I his is the "dispersion relationship" and measures how the wave vector k, varies with frequency

Electrons In Materials Bringing It Back to Reality The wave propagates like exp i(**k** . **r** - ω t + ϕ) In insulators, electrons are bound to atoms/molecules, Suppose it propagates along the z axis -> kz but can be displaced by electric fields The wavelength in free space is λ_v In metals, electrons are free and can "drift" through the and the wavevector is k, metals under the influence of electric fields, slowed by "collisions" Look at the spatial part only $exp(ikz) = exp\{i (n_r + i n_i) k_v z\}$ In plasmas, ions are relatively stationary and electrons $exp(ikz) = exp(in_r k_v z) exp(-n_i k_v z)$ move relatively freely under the influence of electric First term is phase factor, second is a decay term fields Measure the phase speed - gives n, (historically n) In a fluid, electrons are bound to atoms/molecules and • Measure the decay - gives n_i (historically κ) the entire complex can move (align) with the field subject to a "disordering force" (collisions)

A Model of Dielectrics, Metals and Plasmas

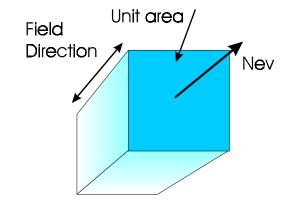
- Assume that in insulators the electrons are attracted to the atom by a restoring force K proportional to displacement - a spring analogy
- Assume that in metals we can approximate the collisions with a drag proportional to velocity - a viscosity analogy
- In addition there is a force on the electron due to the electric field
- Assume there are NO OTHER effects to worry about

Equation of Motion

- $m \partial^2 r / \partial t^2 + m\gamma \partial r / \partial t + Kr = -eE$
- If material is a metal K = 0
- If material is a plasma K,γ = 0
- Assume sinusoidal time dependence, frequency ω
- ω²m r iω mγ r + Kr = -eE
- Note that r is still proportional to E
- $\mathbf{r} = \mathbf{e}\mathbf{E} / (\omega^2 \mathbf{m} \mathbf{K} + i\omega \mathbf{m}\gamma)$

Velocity and Conductivity

- Now Let's look at the velocity v (diff. r wrt t)
- $\mathbf{v} = -\mathbf{e}\mathbf{E} / (\mathbf{m}\mathbf{y} + \mathbf{i}(\omega \mathbf{m} \mathbf{K}/\omega))$
- Now classically the current density J is related to the electric field E
- **J** = $\sigma \mathbf{E}$ = -Nev
- N is carrier density (Carriers per unit volume)



- **Conductivity Formula**
- So $\sigma = Ne^2 / (m\gamma + i(\omega m K/\omega))$
- Or $\sigma = Ne^2 (\omega/m) / (\gamma \omega i(\omega^2 K/m))$
- Let K/m = ω_0^2 , let Ne²/(ε_0 m) = ω_p^2 . $\sigma = \varepsilon_0 \omega_p^2 \omega / (\gamma \omega + i(\omega_0^2 \omega^2))$
- IF $\omega_0 = 0$, which implies K = 0 (metal, plasma),
- THEN $\omega \rightarrow 0$ (DC) value is $\sigma(\omega \rightarrow 0) = \epsilon_0 \omega_0^2 / \gamma$
- Otherwise $\sigma(\omega \rightarrow 0) = 0$
- Enables me to "evaluate" ω_{p}^{2} / γ

Connection to MEs

- We redefined $\epsilon + i\sigma/\omega$
- We said that nothing was happening except the electron motion

- $\varepsilon = \varepsilon_0 + \varepsilon_0 \omega_p^2 / ((\omega_0^2 \omega^2) i\gamma\omega)$ $\varepsilon/\varepsilon_0 = 1 + \omega_p^2 / ((\omega_0^2 \omega^2) i\gamma\omega) = n^2$ So we can at least notionally compute the refractive index on this basis for three cases:
- Insulators, metals and plasmas