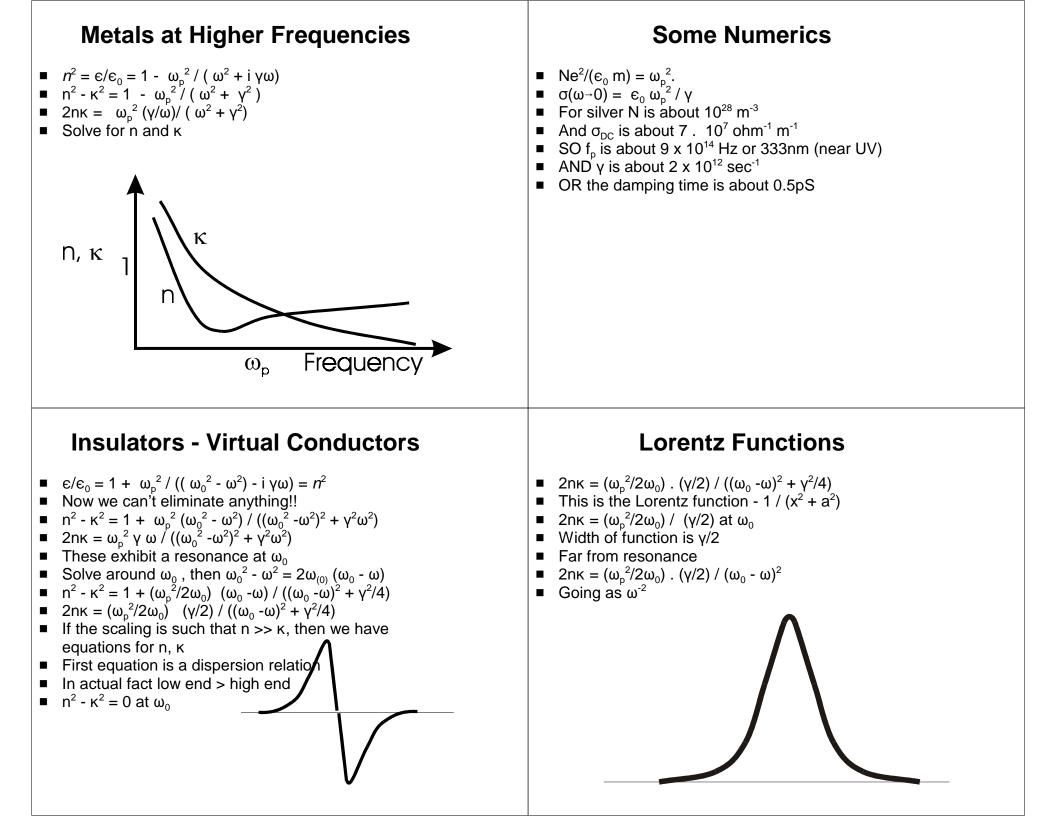

Lecture 5	Equation of Motion
Plasmas, Metals and Dielectrics	 m ∂²r/∂t² + my ∂r/∂t + Kr = -eE If material is a metal K = 0 If material is a plasma K, y = 0 Assume sinusoidal time dependence, frequency ω - ω²m r - iω my r + Kr = -eE Note that r is still proportional to E r = eE / (ω²m - K + iω my)
Velocity and Conductivity	Connection to MEs
 Now Let's look at the velocity v (diff. r wrt t) v = -eE / (mγ+ i(ωm - K/ω)) Now classically the current density J is related to the electric field E J = σE = -Nev N is carrier density (Carriers per unit volume) σ = Ne² (ω/m) / (γω - i(ω² - K/m)) Let K/m = ω₀², let Ne²/(ε₀ m) = ω_p². σ = ε₀ ω_p² ω/ (γω + i(ω₀² - ω²)) IF ω₀ = 0, which implies K = 0 (metal, plasma), THEN ω-0 (DC) value is σ(ω-0) = ε₀ ω_p² / γ Otherwise σ(ω-0) = 0 Enables me to "evaluate" ω_p² / γ 	 We redefined ε + iσ/ω We said that nothing was happening except the electron motion ε = ε₀ + ε₀ ω_p² / ((ω₀² - ω²) - i γω) ε/ε₀ = 1 + ω_p² / ((ω₀² - ω²) - i γω) = n² So we can at least notionally compute the refractive index on this basis for three cases: Insulators, metals and plasmas

Plasmas

- Gases in which electrons have separated from the parent atoms/molecules
- Meet them in laser fusion, upper atmosphere
- Ions stay "fixed", electrons move (like cars and bikes in Toronto)
- $\omega_0 = \gamma = 0$, no restoring force, no damping
- $n^2 = 1 \omega_{\rm p}^2 / \omega^2$
- If $\omega < \omega_n$, *n* is imaginary, no propagation
- If $\omega > \omega_n$, *n* is real propagation with no attenuation
- **Below** plasma frequency ω_n , waves are reflected at plasma boundary - above go through
- $\omega_{p}^{2} = Ne^{2}/(\varepsilon_{0} m)$
- Plasma frequency is a measure of election density, N

Ionospheric Sounding

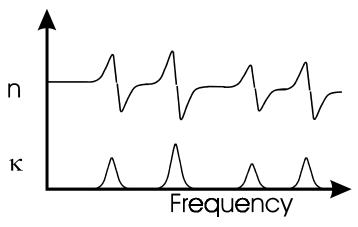
- Point transmitter up transmit pulse
- Measure time to get echo vs frequency
- Frequency of disappearance is plasma frequency
- Below plasma frequency reflectance
- Above plasma frequency transmitted
- Expect to get echo up to a certain frequency then silence
- Can get a measure of electron density vs height



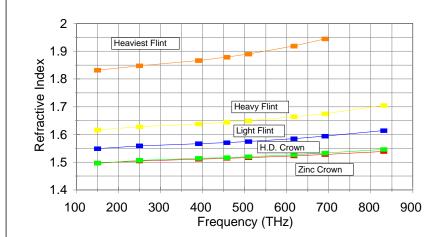
Metals - Plasmas with Drag

- In a metal K= 0 but y # 0 there is a drag
- $n^2 = \epsilon/\epsilon_0 = 1 \omega_p^2 / (\omega^2 + i\gamma\omega)$ $n^2 \kappa^2 = 1 \omega_p^2 / (\omega^2 + \gamma^2)$ $2n\kappa = \omega_p^2 (\gamma/\omega) / (\omega^2 + \gamma^2)$
- At low frequencies
- Solving the above gives $\kappa = \sqrt{(\omega_p^2 / (2\omega\gamma))} = n_i$
- SO WHAT!!!
- Remember this...
- $exp(ikz) = exp(i n_r (2\pi/\lambda) z) exp(- n_i (2\pi/\lambda) z)$
- Now $2\pi/\lambda = \omega/c$
- So wave decays spatially as $\beta = c / (\kappa \omega)$
- $\beta = \sqrt{(2c^2\gamma / \omega_p^2 \omega)}$
- $\beta = \sqrt{2c^2 \epsilon_0 / \sigma_{DC}}$
- $\beta = \sqrt{(2.5 \times 10^6 / (f \pi^2 \sigma_{DC}))}$

Current is Only Skin Deep


- Since all oscillating current is controlled by MEs
- All current in conductors must follow this rule
- Spatial extent of current flow from surface is given by $\beta = \sqrt{(2.5 \times 10^6 / (f \pi^2 \sigma_{DC}))}$
- For silver σ_{DC} of order 7. 10^7 ohm⁻¹ m⁻¹
- So skin depth at 60Hz is about 8mm!!
- Skin depth at 60MHz is about 8µm most of the wire isn't doing anything!!!
- For copper σ_{DC} of order 5.8 x 10⁷ ohm⁻¹ m⁻¹
- So skin depth at 60Hz is about 8.5mm
- Power station bus bars are laminated
 - otherwise it's a waste of copper
- High frequency wires can be tubes!!
- Or use multiple strands of insulated wire (Litz wire)
- Silver plate your copper for HF use?
- Hi-Fi addicts beware

Multiple Resonances


- In "real" dielectrics there are a number of resonances
- So we use principle of superposition to "add them up"
- Gives a series of dispersions in the real part of the refractive index with an overall downward trend with increasing frequency
- And a series of absorption "resonances"
- BUT locally, between resonances, n shows an increasing trend with frequency

Dielectric Optical Properties

 Lorenz formula predicts that if there are resonances both above and below region of interest then there will be a gradual increase of refractive index with frequency or a gradual decrease of refractive index with

Optical Properties of Some Glasses

wavelength