Lecture 6

Group Velocity, Poynting and Polarisation

Propagation of Pulses

- Consider a gaussian pulse in time of width Δt - ie a sine wave multiplied by a gaussian
- By Fourier transforms we can show that this can be resolved into a superposition of sine waves, width $2 / \Delta t$
- In frequency space this is a delta function convolved with a Gaussian

Time Space

Group Velocity

- Phase velocity is the rate of advance of constant phase surfaces.
- Phase velocity can exceed velocity of light in vacuum, c.
- BUT phase velocity really only applies to infinite (time and space) monochromatic (sine) waves
- These do not exist - or if they do, are boring!!

Representation

- Any superposition of sine waves can be represented as
- $E(t, z)=\operatorname{lnt}\left[E_{0}(\omega) \exp i(k(\omega) z-\omega t), d \omega\right]$
- If the integrand is non-zero about a range of frequencies around ω_{0} only
- Change variable to $\Delta \omega=\omega-\omega_{0}$
- $\mathrm{k}(\omega)=\mathrm{k}\left(\omega_{0}\right)+\mathrm{dk} /\left.\mathrm{d} \omega\right|_{\omega 0} \Delta \omega$ (Taylor expansion)
- $E(t, z)=\exp i\left(k\left(\omega_{0}\right) z-\omega_{0} t\right)$
$\operatorname{lnt}\left[E_{0}(\omega) \exp -\mathrm{i} \Delta \omega\left(\mathrm{t}-\mathrm{dk} /\left.\mathrm{d} \omega\right|_{\omega 0} \mathrm{z}\right) \mathrm{d} \omega\right]$
- First term is a carrier wave, propagating at the phase speed
- Second term is the modulation (information) traveling at the group velocity $\mathrm{d} \omega /\left.\mathrm{dk}\right|_{\omega 0}$
- $d \omega / d k=c / n(\omega) /(1+(\omega / n) d n / d \omega)$
- The group velocity should be smaller than the speed of light....

Group Velocity in Plasmas

- $n^{2}=1-\omega_{\mathrm{p}}{ }^{2} / \omega^{2}$
- If we assume that $\omega_{p}<\omega$, then n is real and <1
- The phase velocity is c / n which is $>\mathrm{C}$
- It is left as an exercise for the reader to show that....
- The group velocity is cn which is $<\mathrm{c}$
- This is not a general formula - it only applies to plasmas
- The group velocity is the velocity at which information can propagate
- There is no information in a monochromatic plane wave

MEs in Linear, Isotropic Medium

- $\operatorname{Div}[E]=\rho / \epsilon$
- $\operatorname{Div}[H]=0$
- Curl[E] $=-\partial / \partial t(\mu \mathrm{H})$
- Curl[H$]=\partial / \partial \mathrm{t}(\epsilon E)+\mathrm{J}$
- $\epsilon=\epsilon_{0}\left(1+X_{e}\right)$
- $\mu=\mu_{0}\left(1+X_{m}\right)$
- Notice that J has not been replaced with the conductivity

Poynting Vectors

- Start with $\operatorname{Div}[E \times H]=H . \operatorname{Curl}[E]-E . \operatorname{Curl}[H]$
(general vector relationship)
- $\operatorname{Div}[E \times H]=-H . \partial / \partial t(\mu H)-E . \partial / \partial t(\epsilon E)-E . J$
- $\operatorname{Div}[S]+\partial / \partial t\left(1 / 2 \mu H^{2}+1 / 2 \in E^{2}\right)+E . J=0$
- Where $\mathrm{S}=\mathrm{E} \times \mathrm{H}$
- The last term is a Joule heating term
- The second term is the rate of change of energy in the magnetic and electrostatic fields
- The first term can be interpreted as the energy flow with the Poynting vector pointing in the direction of energy flow
- Since $S=E \times H$ these form a right-handed set as expected from plane wave consideration

Poynting and Plane Waves

- $S=E \times H$
- Let's take time averages
- $\left\langle\mathrm{S}>=<\operatorname{Re}(\mathrm{E}) \times \operatorname{Re}(\mathrm{H})>=1 / 2 \operatorname{Re}\left(E \times H^{*}\right)\right.$
- But $\mathrm{H}^{*}=\sqrt{ }(\epsilon / \mu) \mathbf{k} \times \mathrm{E}^{*}$
- So $<$ S $>=1 / 2 \sqrt{ }(\epsilon / \mu)\left|E_{0}\right|^{2} \mathbf{k}$
- The Poynting vector points in the direction of energy flow - the DOP in this case
- The magnitude is proportional to $\left|E_{0}\right|^{2}$

The General (Ugly) Case

- $\operatorname{Div}\left[E \times H^{*}\right]-i \omega\left(\mu H . H^{*}+\epsilon^{*} E . E^{*}\right)+E . J^{*}=0$
- Real part of this equation as the power equation
- Power dissipated if the real part of 2nd term <> 0
- Only true if μ, ϵ are complex (imaginary <> 0)
- Joule Heating occurs through the real part of $E . J^{*}$
- If $\mathrm{J}=\sigma \mathrm{E}$, then the real part of σ counts
- Lossless medium has real μ, ϵ and imaginary or zero σ

The Pressure of the Wave

- Force per unit volume is also the rate of change of pressure with distance (eg hydrostatic equation)
- Therefore the pressure p is equal to the energy density U
- $\mathrm{U}=1 / 2\left(\mu \mathrm{H}_{\mathrm{y}}{ }^{2}+\epsilon \mathrm{E}_{\mathrm{x}}{ }^{2}\right)$ for the plane wave

The Force of a Plane Wave

- A plane EM wave passes through a conducting region
- A current J appears because of the electric field acting on the electrons
- A force F appears because of the interaction of the moving electrons with the magnetic field
- $F=J \times \mu H$ (per unit volume)
- But we can substitute from Mes
- F = (Curl[H] - $\partial / \partial t(\epsilon E)) \times \mu H$
- After some substitution (it is left as an exercise..)
- $\mathrm{F}=-\mu \mathrm{H} \times$ Curl[H$]-\epsilon E \times$ Curl[E] $-\epsilon \mu \partial / \partial t(E x H)$
- Third term is zero in steady state
- In plane wave only $E_{x}, H_{y}<>0$ and $\partial / \partial x, \partial / \partial y=0$
- $\mathrm{H} \times \mathrm{Curl}[\mathrm{H}]->1 / 2 \partial / \partial z\left(\mathrm{H}_{y}^{2}\right) k$
- $F_{z}=-1 / 2 \partial / \partial z\left(\mu H_{y}{ }^{2}+\epsilon E_{x}^{2}\right)=-\partial U / \partial z$
- Force per unit volume = rate of decay of energy in waves with distance

The Pressure of the Wave

- Pressure $p=|S| / c$
- In the general case this needs integrating over direction to account for solid angles - but we are ignoring that and using plane waves
- Pressure is force/unit area
- Force is rate of change of momentum p
- $\partial \mathrm{p} / \partial \mathrm{t}=\mathrm{A} \mathrm{P}=\mathrm{A}(1 / \mathrm{c})|\mathrm{S}|$
- For a plane wave momentum/unit area is the energy in the beam/unit area divided by the speed of light
- COMPARE TO PHOTONS
- Photon energy $=\hbar \omega$
- Photon momentum $=\hbar \omega / \mathrm{c}=\hbar \mathrm{k}$
- In vector terms photon momentum = خk
- Total energy in the beam $=\mathrm{N} \hbar \omega$

Polarisation

- If light is a vector wave with an electric field and a magnetic field orthogonal to one another
- Then we can resolve any single wave propagating along the z axis into two parts with electric vectors along the x and y axes respectively - E_{x} and E_{y}
- BUT it is possible that these are not in phase -there is a specific phase difference between the two waves
- Restrictions...
- Not just any pair of fields will do
- MUST have same frequency (exactly) and a defined phase relationship between then
- OBSERVABLE features can have many frequencies BUT must have a defined phase relationship which applies for all frequencies
- OBSERVABLE is formed of many sub-parts each of which is of a single frequency and defined phase relationship

Some Common Polarisations

- $0, \mathrm{~m} \pi$ - total electric vector is a straight line at an angle given by $\tan ^{-1}\left(E_{y} / E_{x}\right)$ - linearly polarised
- $(2 m+1) \pi / 2$ and $E_{y}=E_{x}$ - circularly polarised
- Anything else - elliptically polarised light
- All described by the locus of the vector
- $E_{x} \cos \omega t x+E_{y} \cos (\omega t+\delta) y$
- Or in complex notation
$E_{x} \exp i \omega t x+E_{y} \exp i(\omega t+\delta) y->E_{x} x+E_{y} \exp i \delta y$

Some Common Polarisations

But You Can Only Measure Energy

- OK so we must characterise things in terms of energy quantities
- $\mathrm{s}_{0}=\mathrm{E}_{\mathrm{ox}}{ }^{2}+\mathrm{E}_{\mathrm{oy}}{ }^{2} \quad=\mathrm{s}_{0}$
- $\mathrm{s}_{1}=\mathrm{E}_{\mathrm{ox}}{ }^{2}-\mathrm{E}_{\mathrm{oy}}{ }^{2} \quad=s_{0} \sin 2 x \cos 2 \psi$
- $\mathrm{s}_{2}=2 \mathrm{E}_{\mathrm{ox}} \mathrm{E}_{\mathrm{oy}} \cos (-\delta)=\mathrm{s}_{0} \sin 2 \mathrm{x} \sin 2 \psi$
- $\mathrm{s}_{3}=2 \mathrm{E}_{\mathrm{ox}} \mathrm{E}_{\text {oy }} \sin (-\delta)=\mathrm{s}_{0} \cos 2 \mathrm{X}$
- Stokes Parameters - after Lord Stokes of course!

Poincaré Sphere

- $\mathrm{s}_{0}{ }^{2}=\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}+\mathrm{s}_{3}{ }^{2}$
- The angles $2 x$ and 2ψ form the latitude and longitude on the sphere
- All polarisations of a single beam are points on the surfaces of the sphere
- Eg poles are circular polarisation
- Eg equator is linear polarisation

Natural Light

- "Natural" light does not follow the restrictions on frequency and phase as previous discussion
- "Natural" light considered as random superposition of "wavelets" of random phasing
- $\mathrm{s}_{0}{ }^{2} \geq \mathrm{S}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}+\mathrm{s}_{3}{ }^{2}$
- For light from a thermal source
- $\mathrm{s}_{0}<>0, \mathrm{~s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=0$
- For white light from a linear polariser
- $\mathrm{s}_{0}= \pm \mathrm{s}_{1}<>0, \mathrm{~s}_{2}=\mathrm{s}_{3}=0$

The Real World

- See a sum of lots of little "wavelets" (except lasers!)
- Stokes parameters are energy-like quantities and can be added up for the sum of a set of "wavelets"
- $\mathrm{s}_{0}=\left\langle\mathrm{E}_{\mathrm{ox}}^{2}\right\rangle+\left\langle\mathrm{E}_{\mathrm{oy}}^{2}\right\rangle \quad=\mathrm{s}_{0}$
- $\mathrm{s}_{1}=\left\langle\mathrm{E}_{0 \mathrm{x}}{ }^{2}\right\rangle-\left\langle\mathrm{E}_{\text {oy }}{ }^{2}\right\rangle \quad=\mathrm{s}_{0}<\sin 2 \mathrm{x} \cos 2 \psi>$
- $\mathrm{s}_{2}=2<\mathrm{E}_{\text {ox }} \mathrm{E}_{\text {oy }} \cos (-\delta)>\quad=\mathrm{s}_{0}<\sin 2 x \sin 2 \psi>$
- $\mathrm{s}_{3}=2<\mathrm{E}_{\text {ox }} \mathrm{E}_{\text {oy }} \sin (-\delta)>\quad=\mathrm{s}_{0}<\cos 2 x>$

Radiometric Units

- Defined by history - not by logic!!
- Energy is the fundamental unit (J)
- Power is energy per unit time (W)
- Power per unit solid angle
- "Pointance" - W sr ${ }^{-1}$ - intensity
- Power per unit area
- "areance"

W m ${ }^{-2}$
??????

- Power per unit area per unit solid angle
- "sterance" - $\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1}$ - radiance

Depends Upon Your Point of View

- For sources interested in...
- Total power (W)
- Power into a solid angle (Wsr^{-1})
- For receivers interested in....
- Total power per unit area $\left(\mathrm{Wm}^{-2}\right)$
- Power per unit area per unit solid angle ($\mathrm{Wm}^{-2} \mathrm{sr}^{-1}$)

