
Lecture 7

Polarisation, Anisotropy
and Jones Matrices

Some Common Polarisations

� 0, m� - total electric vector is a straight line at an angle
given by tan-1 (Ey/Ex) - linearly polarised

� (2m+1)�/2 and Ey = Ex - circularly polarised
� Anything else - elliptically polarised light
� All described by the locus of the vector
� Excos�t x + Eycos(�t+�) y 
� Or in complex notation

Ex exp i�t x + Eyexp i(�t+�) y -> Ex x + Eyexp i� y

Some Common Polarisations But You Can Only Measure Energy

� OK so we must characterise things in terms of energy
quantities

� so = Eox
2 + Eoy

2         = s0 Total energy
� s1 = Eox

2 - Eoy
2            = s0 sin2�cos2� Difference in

energy
� s2 = 2 Eox Eoy cos(-�) =  s0 sin2�sin2�
� s3 = 2 Eox Eoy sin(-�)  =  s0 cos2�

� Stokes Parameters - after Lord Stokes.



Poincaré Sphere

� s0
2 = s1

2 + s2
2 + s3

2

� The angles 2� and 2 � form the latitude and longitude
on the sphere

� All polarisations of a single beam are points on the
surfaces of the sphere

� Eg poles are circular polarisation
� Eg equator is linear polarisation

The Real World

� See a sum of lots of little “wavelets” (except lasers!)
� Stokes parameters are energy-like quantities and can

be added up for the sum of a set of “wavelets”
� s0 = <Eox

2> + <Eoy
2> = s0

� s1 = <Eox
2> - <Eoy

2> = s0 <sin2�cos2�>
� s2 = 2 <Eox Eoy cos(-�)> = s0 <sin2�sin2�>
� s3 = 2 <Eox Eoy sin(-�)> = s0 <cos2�>

Natural Light

� “Natural” light does not follow the restrictions on
frequency and phase as previous discussion

� “Natural” light considered as random superposition of
“wavelets” of random phasing

� s0
2 � s1

2 + s2
2 + s3

2

� For light from a thermal source
� s0 <> 0,  s1 = s2 = s3 = 0
� For white light from a linear polariser
� s0 = ±s1 <> 0,  s2 = s3 = 0

Anisotropy

� P = �0�eE
� Without doing too much math.  The permittivity and

refractive index in the “right” co-ordinates can be
written as a diagonal matrix (three values)

� If two diagonal elements are the same -> unixial
� If they’re all different -> biaxial
� That means that we can propagate Ex, Ey at different

velocities and the phase relationship will depend upon
the distance from the ref. point

� NOTE 1: The axes are controlled by the dielectric
(crystal) axes - they are no longer arbitrary

� NOTE 2: Need to orient the crystal in the system to get
all the axes right
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Jones Matrices

� Convenient to write Ex, Ey as a column
vector

� Here are some Jones vectors

    Linear Circular

� Jones Vectors can be added BUT only if everything
refers to the same (exactly the same) frequency
(defined phase relationship) 

� An optical element can be configured as a 2x2 matrix
which multiplies the Jones vector to give a new vector

� Optical elements can be stacked to find the effect of a
system on polarisation

Some Jones Matrices

� Linear Polarisers
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� Phase Changer

1 0

0 ex p ( )iδ








Produce Polarised Light

� Start with anything
� Linearly polarise it - generates an axis set
� Add a phase retarder where � = �/2
� Called a “quarter wave plate because the relative

retardation is 1/4 of a wavelength
� Got circularly polarised light!

Optical Activity

� Substances can rotate the plane of polarisation
� Amount of rotation per unit length = “specific rotary

power” eg 3.7o/mm
� Can be “explained” as a different propagation speed
� (refractive index) for RH and LH circular polarisation
� How does this happen?
� Effect of a magnetic field on propagation



Optical Activity

� Notice that this is a static external field, not the field
from the wave itself

� Using our SHM model of the dielectric
� m d2/dt2 (r) + Kr = -eE - e dr/dt x (µH0)
� But the polarisation P = ner
� So can solve the above for a wave solution
� (-m�2 + K ) P = Ne2E + i�µ P x H0

� Which can be written in the form of a tensor

�

χ χ
χ χ

χ

x x x y

x y x x
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0

0 0
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� Where all the � are functions of the field H0

� We can solve for the dispersion relation for the two
polarisations...

Eigenstates, etc.

� -k2 Ex + �2/c2 Ex   =    - �2/c2 ( �xx Ex + i �xy Ey )
� -k2 Ey + �2/c2 Ey   =    - �2/c2 ( -i�xy Ex + �xx Ey )
� Which has solutions for
� Ex = ±i Ey

� And  k = (�/c) �( 1+ �xx ± �xy )
� Which leads to 
� n

5
 =  �( 1+ �xx + �xy )

� nr =  �( 1+ �xx - �xy )

Optical Activity - Natural

� Birefringence - multiple refractive indices (linear)
� Optical activity - multiple refractive indices (circular)

Optical Activity - Induced

� Faraday rotation
� Apply a magnetic field
� Becomes optically active

� Voigt Effect
� Apply a magnetic field
� Becomes birefringent

� Pockels Effect - material has no centre of inversion
(crystal)
� Apply an electric field
� Becomes (changes) birefringence

� Kerr Effect - material does have a centre of inversion
(isotropic)
� Apply an electric field
� Becomes birefringent

� Above are used routinely to manipulate (switch) laser
beams - high frequency operation



Typical Kerr Cell

� Linearly polarise light going in
� When Kerr cell off (no field) nothing happens
� Kerr cell axis at 45o to x,y
� Apply field to apply � relative phase shift between Ex,

Ey

� Then polarisation is still linear but rotates 180o

� Use a second polariser at 90o to first
� Blocks off, Passes on....


