Lecture 7

Polarisation, Anisotropy and Jones Matrices

Some Common Polarisations

- $0, \mathrm{~m} \pi$ - total electric vector is a straight line at an angle given by $\tan ^{-1}\left(E_{y} / E_{x}\right)$ - linearly polarised
- $(2 m+1) \pi / 2$ and $E_{y}=E_{x}$ - circularly polarised
- Anything else - elliptically polarised light
- All described by the locus of the vector
- $E_{x} \cos \omega t x+E_{y} \cos (\omega t+\delta) y$
- Or in complex notation
$E_{x} \exp i \omega t x+E_{y} \exp i(\omega t+\delta) y->E_{x} x+E_{y} \exp i \delta y$

Some Common Polarisations

But You Can Only Measure Energy

- OK so we must characterise things in terms of energy quantities
- $\mathrm{S}_{\mathrm{o}}=\mathrm{E}_{\mathrm{ox}}{ }^{2}+\mathrm{E}_{\mathrm{oy}}{ }^{2} \quad=\mathrm{s}_{0} \quad$ Total energy
- $\mathrm{s}_{1}=\mathrm{E}_{\mathrm{ox}}{ }^{2}-\mathrm{E}_{\mathrm{oy}}^{2}{ }^{2} \quad=\mathrm{s}_{0} \sin 2 x \cos 2 \psi$ Difference in
- $s_{2}=2 E_{\text {ox }} E_{\text {oy }} \cos (-\delta)=s_{0} \sin 2 x \sin 2 \psi$
- $\mathrm{s}_{3}=2 \mathrm{E}_{\mathrm{ox}} \mathrm{E}_{\text {oy }} \sin (-\delta)=\mathrm{s}_{0} \cos 2 \mathrm{X}$
- Stokes Parameters - after Lord Stokes.

Poincaré Sphere

- $\mathrm{s}_{0}{ }^{2}=\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}+\mathrm{s}_{3}{ }^{2}$
- The angles $2 x$ and 2ψ form the latitude and longitude on the sphere
- All polarisations of a single beam are points on the surfaces of the sphere
- Eg poles are circular polarisation
- Eg equator is linear polarisation

Natural Light

- "Natural" light does not follow the restrictions on frequency and phase as previous discussion
- "Natural" light considered as random superposition of "wavelets" of random phasing
- $\mathrm{s}_{0}{ }^{2} \geq \mathrm{S}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}+\mathrm{s}_{3}{ }^{2}$
- For light from a thermal source
- $\mathrm{s}_{0}<>0, \mathrm{~s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=0$
- For white light from a linear polariser
- $\mathrm{s}_{0}= \pm \mathrm{s}_{1}<>0, \mathrm{~s}_{2}=\mathrm{s}_{3}=0$

The Real World

- See a sum of lots of little "wavelets" (except lasers!)
- Stokes parameters are energy-like quantities and can be added up for the sum of a set of "wavelets"
- $\mathrm{s}_{0}=\left\langle\mathrm{E}_{\mathrm{ox}}{ }^{2}\right\rangle+\left\langle\mathrm{E}_{\mathrm{oy}}{ }^{2}\right\rangle$
- $\mathrm{S}_{1}=\left\langle\mathrm{E}_{\mathrm{ox}}{ }^{2}\right\rangle-\left\langle\mathrm{E}_{\mathrm{oy}}{ }^{2}\right\rangle \quad=\mathrm{s}_{0}<\sin 2 \mathrm{x} \cos 2 \psi>$
- $\mathrm{s}_{2}=2<\mathrm{E}_{\text {ox }} \mathrm{E}_{\text {oy }} \cos (-\delta)>\quad=\mathrm{s}_{0}<\sin 2 x \sin 2 \psi>$
- $\mathrm{s}_{3}=2<\mathrm{E}_{\text {ox }} \mathrm{E}_{\text {oy }} \sin (-\delta)>\quad=\mathrm{s}_{0}<\cos 2 x>$
- $\mathbf{P}=\epsilon_{0} X_{e} E$
- Without doing too much math. The permittivity and refractive index in the "right" co-ordinates can be written as a diagonal matrix (three values)
- If two diagonal elements are the same -> unixial
- If they're all different -> biaxial
- That means that we can propagate $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$ at different velocities and the phase relationship will depend upon the distance from the ref. point
- NOTE 1: The axes are controlled by the dielectric (crystal) axes - they are no longer arbitrary
- NOTE 2: Need to orient the crystal in the system to get all the axes right

Jones Matrices

- Convenient to write $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$ as a column vector
- Here are some Jones vectors
$\binom{0}{1}\binom{1}{0}$ Linear $\quad \sqrt{1 / 2}\binom{1}{ \pm i}$ Circular
- Jones Vectors can be added BUT only if everything refers to the same (exactly the same) frequency (defined phase relationship)
- An optical element can be configured as a 2×2 matrix which multiplies the Jones vector to give a new vector
- Optical elements can be stacked to find the effect of a system on polarisation

Produce Polarised Light

- Start with anything
- Linearly polarise it - generates an axis set
- Add a phase retarder where $\delta=\pi / 2$
- Called a "quarter wave plate because the relative retardation is $1 / 4$ of a wavelength
- Got circularly polarised light!

Some Jones Matrices

- Linear Polarisers
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \quad\left(\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta\end{array}\right)$
- Phase Changer
$\left(\begin{array}{cc}1 & 0 \\ 0 & \exp (i \boldsymbol{\delta})\end{array}\right)$

Optical Activity

- Substances can rotate the plane of polarisation
- Amount of rotation per unit length = "specific rotary power" eg $3.7 \% / \mathrm{mm}$
- Can be "explained" as a different propagation speed
- (refractive index) for RH and LH circular polarisation
- How does this happen?
- Effect of a magnetic field on propagation

Optical Activity

- Notice that this is a static external field, not the field from the wave itself
- Using our SHM model of the dielectric
- $\mathrm{m} \mathrm{d}^{2} / \mathrm{dt}^{2}(\mathrm{r})+\mathrm{Kr}=-\mathrm{eE}-\mathrm{e} \mathrm{dr} / \mathrm{dt} \mathrm{x}\left(\mu \mathrm{H}_{0}\right)$
- But the polarisation $P=$ ner
- So can solve the above for a wave solution
- (-m $\left.\omega^{2}+K\right) P=\mathrm{Ne}^{2} E+i \omega \mu \mathrm{P} \times \mathrm{H}_{0}$
- Which can be written in the form of a tensor

$$
\chi_{x x} \quad i \chi_{x y} \quad 0
$$

- $\begin{array}{llll}-i \chi_{x y} & \chi_{x x} & 0\end{array}$

$$
\begin{array}{lll}
0 & 0 & \chi_{z z}
\end{array}
$$

- Where all the x are functions of the field H_{0}
- We can solve for the dispersion relation for the two polarisations...

Optical Activity - Natural

- Birefringence - multiple refractive indices (linear)
- Optical activity - multiple refractive indices (circular)

Eigenstates, etc.

- $-\mathrm{k}^{2} E_{x}+\omega^{2} / \mathrm{c}^{2} E_{x}=-\omega^{2} / \mathrm{c}^{2}\left(\mathrm{X}_{\mathrm{xx}} E_{x}+\mathrm{i} \chi_{\mathrm{xy}} E_{y}\right)$
- $-\mathrm{k}^{2} E_{y}+\omega^{2} / \mathrm{c}^{2} E_{y}=-\omega^{2} / \mathrm{c}^{2}\left(-i X_{x y} E_{x}+X_{x x} E_{y}\right)$
- Which has solutions for
- $E_{x}= \pm i E_{y}$
- And $\mathrm{k}=(\omega / \mathrm{c}) \sqrt{ }\left(1+\mathrm{X}_{\mathrm{xx}} \pm \mathrm{X}_{\mathrm{xy}}\right)$
- Which leads to
- $\mathrm{n}_{\ell}=\sqrt{ }\left(1+\mathrm{X}_{\mathrm{xx}}+\mathrm{X}_{\mathrm{xy}}\right)$
- $\mathrm{n}_{\mathrm{r}}=\sqrt{ }\left(1+X_{\mathrm{xx}}-X_{\mathrm{xy}}\right)$

Optical Activity - Induced

- Faraday rotation
- Apply a magnetic field
- Becomes optically active
- Voigt Effect
- Apply a magnetic field
- Becomes birefringent
- Pockels Effect - material has no centre of inversion (crystal)
- Apply an electric field
- Becomes (changes) birefringence
- Kerr Effect - material does have a centre of inversion (isotropic)
- Apply an electric field
- Becomes birefringent
- Above are used routinely to manipulate (switch) laser beams - high frequency operation

Typical Kerr Cell

- Linearly polarise light going in
- When Kerr cell off (no field) nothing happens
- Kerr cell axis at 45° to x, y
- Apply field to apply π relative phase shift between E_{x}, E_{y}
- Then polarisation is still linear but rotates 180°
- Use a second polariser at 90° to first
- Blocks off, Passes on....

+ V

