Lecture 7	Some Common Polarisations
Polarisation, Anisotropy and Jones Matrices	 0, mπ - total electric vector is a straight line at an angle given by tan⁻¹ (E_y/E_x) - linearly polarised (2m+1)π/2 and E_y = E_x - circularly polarised Anything else - elliptically polarised light All described by the locus of the vector E_xcosωt x + E_ycos(ωt+δ) y Or in complex notation E_x exp iωt x + E_yexp i(ωt+δ) y -> E_x x + E_yexp iδ y
Some Common Polarisations	But You Can Only Measure Energy
$ \begin{array}{c} 0 \\ \pi \\ $	 OK so we must characterise things in terms of energy quantities s₀ = E_{0x}² + E_{0y}² = s₀ Total energy s₁ = E_{0x}² - E_{0y}² = s₀ sin2χcos2ψ Difference in energy s₂ = 2 E_{0x} E_{0y} cos(-δ) = s₀ sin2χsin2ψ s₃ = 2 E_{0x} E_{0y} sin(-δ) = s₀ cos2χ Stokes Parameters - after Lord Stokes.

Poincaré Sphere

- $\bullet S_0^2 = S_1^2 + S_2^2 + S_3^2$
- The angles 2χ and 2ψ form the latitude and longitude on the sphere
- All polarisations of a single beam are points on the surfaces of the sphere S_3
- Eg poles are circular polarisation
- Eg equator is linear polarisation

The Real World

- See a sum of lots of little "wavelets" (except lasers!)
- Stokes parameters are energy-like quantities and can be added up for the sum of a set of "wavelets"

Natural Light

- "Natural" light does not follow the restrictions on frequency and phase as previous discussion
- "Natural" light considered as random superposition of "wavelets" of random phasing
- $S_0^2 \ge S_1^2 + S_2^2 + S_3^2$
- For light from a thermal source
- $S_0 <> 0$, $S_1 = S_2 = S_3 = 0$
- For white light from a linear polariser
- $S_0 = \pm S_1 \iff 0$, $S_2 = S_3 = 0$

Anisotropy

$\blacksquare \mathbf{P} = \mathbf{e}_0 \mathbf{X}_0 \mathbf{E}$

- Without doing too much math. The permittivity and refractive index in the "right" co-ordinates can be written as a diagonal matrix (three values)
- If two diagonal elements are the same -> unixial
- If they're all different -> biaxial
- That means that we can propagate E_x, E_y at different velocities and the phase relationship will depend upon the distance from the ref. point
- NOTE 1: The axes are controlled by the dielectric (crystal) axes - they are no longer arbitrary
- NOTE 2: Need to orient the crystal in the system to get all the axes right

Jones Matrices

- Convenient to write E_x, E_y as a column vector
- Here are some Jones vectors

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 Linear $\sqrt{1/2} \begin{pmatrix} 1 \\ \pm i \end{pmatrix}$ Circular

 E_x

- Jones Vectors can be added BUT only if everything refers to the same (exactly the same) frequency (defined phase relationship)
- An optical element can be configured as a 2x2 matrix which multiplies the Jones vector to give a new vector
- Optical elements can be stacked to find the effect of a system on polarisation

Produce Polarised Light

Some Jones Matrices

Linear Polarisers

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \cos^2\theta & \sin\theta \\ \sin\theta\cos\theta & \sin\theta \end{pmatrix}$$

Phase Changer

$$(\sin\theta\cos\theta)$$

 $\sin\theta\cos\theta$ $\sin^2\theta$

$$\theta = \sin^2 \theta$$

Phase Changer

0 $\exp(i\delta)$

Optical Activity

- Substances can rotate the plane of polarisation
- Amount of rotation per unit length = "specific rotary power" eg 3.7°/mm
- Can be "explained" as a different propagation speed
- (refractive index) for RH and LH circular polarisation
- How does this happen?
- Effect of a magnetic field on propagation

- Start with anything
- Linearly polarise it generates an axis set
- Add a phase retarder where $\delta = \pi/2$
- Called a "quarter wave plate because the relative retardation is 1/4 of a wavelength
- Got circularly polarised light!

Optical Activity Eigenstates, etc. • $-k^2 E_x + \omega^2/c^2 E_x = -\omega^2/c^2 (\chi_{xx} E_x + i \chi_{xy} E_y)$ Notice that this is a static external field, not the field • $-k^2 \tilde{E_y} + \omega^2/c^2 \tilde{E_y} = -\omega^2/c^2 (-i\chi_{xy} \tilde{E_x} + \chi_{xx} \tilde{E_y})$ • Which has solutions for from the wave itself Using our SHM model of the dielectric • $m d^2/dt^2 (r) + Kr = -eE - e dr/dt x (\mu H_0)$ • $E_x = \pm i E_y$ • And $k = (\omega/c) \sqrt{1 + \chi_{xx} \pm \chi_{xy}}$ But the polarisation P = ner So can solve the above for a wave solution Which leads to • $n_{\ell} = \sqrt{(1 + \chi_{xx} + \chi_{xy})}$ • $n_r = \sqrt{(1 + \chi_{xx} - \chi_{xy})}$ • $(-m\omega^2 + K) P = Ne^2E + i\omega\mu P \times H_0$ Which can be written in the form of a tensor $\chi_{xx} = i\chi_{xy} = 0$ $-i\chi_{xy} \quad \chi_{xx} \quad 0$ $0 \quad 0 \quad \chi_{zz}$ • Where all the χ are functions of the field H_o We can solve for the dispersion relation for the two polarisations...

Optical Activity - Natural

- Birefringence multiple refractive indices (linear)
- Optical activity multiple refractive indices (circular)

Optical Activity - Induced

- Faraday rotation
 - Apply a magnetic field
 - Becomes optically active
- Voigt Effect
 - Apply a magnetic field
 - Becomes birefringent
- Pockels Effect material has no centre of inversion (crystal)
 - Apply an electric field
 - Becomes (changes) birefringence
- Kerr Effect material does have a centre of inversion (isotropic)
 - Apply an electric field
 - Becomes birefringent
- Above are used routinely to manipulate (switch) laser beams - high frequency operation

Typical Kerr Cell

- Linearly polarise light going in
- When Kerr cell off (no field) nothing happens
- Kerr cell axis at 45° to x,y
- Apply field to apply π relative phase shift between E_x , E_y
- Then polarisation is still linear but rotates 180°
- Use a second polariser at 90° to first
- Blocks off, Passes on....

