
Lecture 8	Radiometric Units
Units	 History and definition are intertwined (candle-power) Two sets of units Standard Physics Units (W, J, m, etc) "Eye weighted" numbers Eye weighting - luminous efficiency curves are level-dependent The plane wave is a special case and very atypical Defined by history - not by logic!! Energy is the fundamental unit (J) Power is energy per unit time (W) Fundmental Unit is "Radiance" Radiance has units of Wm⁻²sr⁻¹(α⁻¹) where α is a measure of the spectrum (frequency or wavelength) If α is missing, then it is the integral over all frequencies If α present then it measures the spectral interval

The Units of "Spectral Interval"

- Possibilities for α
 - Wavelength (mm, µm, nm, etc)
 - Frequency (Hz, MHz, Ghz, Thz, etc)
 - Wavenumber (the inverse of wavelength) cm⁻¹ (yes that does give a unit of (cm⁻¹)⁻¹ which is NOT cm)
 - Photon Energy (J, eV)
- Since photon energy is h*f*, and λ⁻¹ = f/c the last three are all measures of frequency and are linearly related to each other.
- Frequency units are inversely related to wavelength units
- Formulae with wavenumber, frequency and energy are proportional to each other and can be transformed by appropriate multiplicative factors
- Wavelength formulae are different

Definition of Radiance (L)

- The Radiance L can be defined as "the power passing through unit area in unit solid angle about the normal to the area (per unit spectral interval)"
- $dW = L d\ddot{A} d\Omega d\alpha$
- Typical units are...
- Wm⁻²sr⁻¹µm⁻¹
- $Wm^{-2}sr^{-1}(cm^{-1})^{-1}$
- Wm⁻²sr⁻¹Hz⁻¹
- Erg sec⁻¹cm⁻² sr⁻¹ Å⁻¹ (ouch!!)
- Radiance is a vector

Definition of Irradiance (E)

- Is the total power (per spectral interval) passing through unit area
- Is in some sense the integral of Radiance
- But need to worry about "projected area"

dA

- $E = \int L \cos\theta$ $d\Omega$
- Hemispheric...
- Spherical....

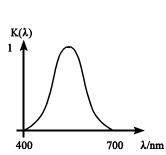
Notes on Irradiance (E)

- If we do a hemispheric integral with a uniform radiance the Irradiance E = πL
- If we do a spherical integral with a uniform radiance then the Irradiance = 0
- Typical units are...
 - Wm⁻²µm⁻¹
 - Wm⁻²(cm⁻¹)⁻¹
 - Wm⁻²Hz⁻¹

dΩ

- Erg sec⁻¹ cm⁻² Å⁻¹ (ouch!!)
- Irradiance is a vector

Radiant Intensity


- Radiant intensity is the power radiated by a source into unit solid angle
- $dP = Id\Omega$
- If the source is isotropic the $P = 4\pi I$
- Typical units are...
 - Wsr⁻¹µm⁻¹
 - Wsr⁻¹(cm⁻¹)⁻¹
 - Wsr⁻¹Hz⁻¹
 - Erg sec⁻¹ sr⁻¹ Å⁻¹ (ouch!!)

It Depends Upon Your Point of View

- What you are interested in is often determined by the situation you find yourself in
- "Point" sources
 - Total Power
 - Radiant Intensity
- "Extended" sources
 - Total power
 - Irradiance (Radiant Exitance)
 - Radiance
- Receivers
 - Radiance
 - Irradiance

Photometric Units

- Photometric units are weighted by the Eye response
- The Power corresponds to the "luminous flux" defined as ∫P(λ)K(λ)dλ
- K(λ) is the eye response and is supposed to be standard
- Difficult to directly relate P and K unless the spectral distribution is known
- Defined in terms of freezing point of platinum

(~2040.8K) ■ Photometric

Units do not have a "spectral interval" term

Photometric Units

- Power becomes Luminous Flux (lumens)
- Radiant Intensity becomes Luminous Intensity (candle power) (candela) 1cm² of a source of freezing platimum is 60cd normal to the surface (cd=lm sr⁻¹)
- Irradiance becomes Illumination
 - footcandle (Im ft⁻²) in British units
 - lux (lm m⁻²) in metric (approved SI unit)
- Radiance becomes Luminance
 - nit (Im m⁻² sr⁻¹)

Colorimetry

- A similar approach is used to define color scales in colorimetry
- Three weighting factors (K_x(λ), K_y(λ), K_z(λ)) are used to define color with peak responses at 600, 555 and 445 respectively
- These are supposed to represent standard reference stimuli
- K_y(λ) is defined identically to the luminosity standard

Integrated Photometric Units

- These units are derived from integrated emission from a surface assuming that the emission is uniform in solid angle (Lambertian surface)
- Illumination of 1 lm m⁻² corresponds to a Luminance of 1 apostlib (1 apostlib = 1/π nit)
- Illumination of 1 Im cm⁻² corresponds to a Luminance of 1 lambert (1 lambert = 10⁴/π nit)
- Illumination of 1 Im ft⁻² corresponds to a Luminance of 1 foot-lambert