Lecture 9

Transmission and Reflection

Reflection at a Boundary

A boundary is defined as a place where something is
discontinuous

Half the work is sorting out what is continuous and what
is discontinuous at the boundary

At an optical boundary the refractive index n changes
Leads to a wave returning (reflected) and a wave
ongoing (transmitted)

Reflection at a Boundary

— Continuous across the boundary
- frequency
— Continuous at the boundary
— spatial variation
— For adielectric
— tangential E field
— tangential H field

Specific Boundary

Consider a boundary at z=0 with a plane wave incident
on it
— angle of incidence 6 wrt to z-axis (normal)
— electric vector in the x-z plane
— No y variation
We must have in the incident waves
- 'k, = 'ksin6,
'k, = *kcosB,




Specific Boundary

At the Boundary

At the interface

- ki.r-owt=k,_.r-wt=k,.r-wt

— noy components

— no z component at interface (z=0)

- Yk x= Yk x=7%k, X

For the reflected wave

— sinB, =sinB,. - Law of reflection

- n, sinB, = n, sinB, - Snell's Law (n sinB is conserved)

Complex Refractive Index

If n, is complex (conductor, etc) then life gets fun!!
— sinB, = n; sinB, / (n, + iK,)
Leads to the following expression for the propagation
w/c[xn;sinB, +zp (n,cos q- K,Sin Q)
+izp(k, cos g + n, sin q)]
p, g are functions of n;, n,, K,, 8, but not x, z
wave propagates spatially as exp(i k, . r)
amplitude given by imaginary part
phase given by real part

Inhomogeneous Waves

Wave propagates as
w/c[xn;sinB, +zp (n,cos q- K,Sin Q)
+izp(k, cos g + n, sin q)]

amplitude given by complex part of equation
— surfaces of constant amplitude given by z=constant
phase given by real part
— surfaces of constant phase given by

X n,;sin@; +z p (n, cos g - K,sin () = constant
surfaces of constant phase not parallel to surfaces of
constant amplitude
— inhomogeneous waves




Boundary Conditions

Boundary conditions at the interface
Boundary conditions for dielectrics

— Tangential E and H fields are continuous
- (ME+T'E)xn="Exn

- ("H+"H)xn=*Hxn

- ("kx"E)xn+(kx "E)xn=(Ckx’E)xn
1% Case - Electric field parallel to interface

— transverse electric (TE)

- s-polarised

2" Case - Magnetic field parallel to interface
— transverse magnetic field

— p-polarised - (magnets have poles)

Boundary Conditions

TE Wave Reflection/Transmission

Substitute in equations ( assuming that py, = p,)

_ 1+E0 + 1—E0 - 2E0

- ME,"kcosb, - “E, "k cosB, = °E, °k cosb,
Substitute for k = 2m1/A, n

- YE,I"E,=[n,cos6, - n,cosB,]/[n,cosB, + n,cosb,]
- ?E,l "E,=[2 n,cos8, ]/[n,cosB; + n,cosb,]
Substitute from Snell’'s Law

- YE,I"E,=sin(B, - 6,)/sin(6, + 6,)

- °E,l "E,= 2 cos8, sinb,/sin(8, + 6,)

— Fresnel Relations

At Normal Incidence

YE, 1 E, = sin(B, - 8,)/sin(6, + B,)

°E,l ""E, = 2 cosb, sinB,/sin(, + 6,)

At normal incidence - expressions are zero!!

— or are they?

as9->0

- YE, I Ey-> (8, - 8,))/(8, + 8,) -> (n, - n,)/(n, + ny)
- °E,I"E,->286,/(6,+8,)->2n,/(n,+n,)




Energy Transmission

The energy reflection R, is given by...
— resolve Poynting vector along normal
- -n.<"S>/n <S>

= (cosB, n,|"Ey*)/(cosb, n, " Ey?) =["E "I E,f?

= sin*(6, - 6,)/sin*(6, + 8,)
The energy transmission T, is given by...
— resolve Poynting vector along normal
- n.<’S>/n <S>

= (cosB, n,|’Ey|*)/(cos, n,|"E|*)

= sin28, sin28, / sin*(6, + 6,)
Noticethat R+ T =1

At Normal Incidence

R=(n,- n1)2/(n2 + n1)2

- T= 4n,n,/(n, +n,)>?

R+T=1

Summary for a TE wave

For a dielectric interface there is no phase change (0,m)
YE,| "E, = sin(B, - 8,)/sin(B, + 6,)

°E, | *'E, = 2 cosB, sin6,/sin(6, + 6,)

At normal incidence

- l_EO/ 1+Eo - (ez - 61)/(62 + 61) > (nl - nz)/(nz + nl)
- °E,I"E,->286,/(8,+8,)->2n/(n,+n,)

The reflected power ratio

- R=sin%®, - 6,)/sin?, + 6,)

The trasmitted power ratio

- T =sin20, sin28, / sin’(6, + 6,)

At normal incidence

- R=(n;-n)%(n, +ny)*, T= 4nn,/(n, + n,)?

The Other Case (TM Waves)

Maxwell’s Equations are (nearly) symmetrical in E, H if
there are no free charges
Any solution for E,H can be written for H,E if we
interchange -, € at the same time
So if for the TE case we have ( assuming that g, = ,)
_ 1+E0 + 1—E0 - 2E0
- ME,"kcosb, - “E, "k cosb, = °E, °k cosb,
for the TM case it is...
1+k1+E0 + 1-k 1—E0 = 2k 2E0
- ME,cosb, - “E,cosb, = °E, cosb,
And the solution proceeds...




Summary for a TM wave

For a dielectric interface there is no phase change (0,m)
- YE,IE,=tan(g, - 8,)/tan(B, + 6,)

- °E,l™E,= 2 cosb, sinb,/sin(B, + 6,)/cos(6, - 6,)
At normal incidence

- l_Eo/ 1+E0 > (6, - 8,)/(6, + 8)) -> (n, - ny)/(n, + ny)
- °E,I"E,->280,06,/(6,+86,)->2n/(n, +n,)

The reflected power ratio

- R=tan*®, - 8,)/tan*(8, + 6,)

The trasmitted power ratio

- T =sin20, sin28, / sin’(6, + 6,)

At normal incidence

- R=(n;-n)%(n,+ny)*, T= 4nny/(n, +ny)°

Critical Angle

n, sinB; = n, sinB, - Snell’'s Law (n sinB is conserved)
If (n,/n,)sinB, > 1 then B, does not exist?

There is no transmitted ray
— reflection must be perfect!!

Brewster’'s Angle

For a TM wave the reflected power ratio
- R=tan?®, - 8,)/tan*8, + 6,)

If (6,+06,)=mn/2thenR =0

— Perfect Transmission (TM only)

For a TE wave the reflected power ratio
- R=sin%®, - 8,)/sin?(6, + 6,)

- No minimum

Phase Changes
For TE waves
- TE,I"E,=sin(8, - 8,)/sin(6, + 6,)
- 2E,l ™E,= 2 cosb, sinb,/sin(6, + 6,)
— Phase change on transmission is 0
— Phase change on reflectionis 0if 8, >0,, mif8, <6,
For TM waves
- YE,I"E,=tan(B, - 6,)/tan(B, + 6,)
- °E,l"E,= 2 cosb, sinb,/sin(, + 6,)/cos(6, - 6,)
Phase change on transmission is 0
Phase change on reflection
- 0if (8, + 8,) <1/2 (less than Brewster’s)
- mif (8, + 6,) > n/2 (greater than Brewster’s)




