Lecture 9

Transmission and Reflection

Reflection at a Boundary

- Continuous across the boundary
- frequency
- Continuous at the boundary
- spatial variation
- For a dielectric
- tangential E field
- tangential H field

Reflection at a Boundary

- A boundary is defined as a place where something is discontinuous
- Half the work is sorting out what is continuous and what is discontinuous at the boundary
- At an optical boundary the refractive index n changes
- Leads to a wave returning (reflected) and a wave ongoing (transmitted)

At the Boundary

- At the interface
$-k_{1} \cdot r-\omega t=k_{1-} \cdot r-\omega t=k_{2} \cdot r-\omega t$
- no y components
- no z component at interface ($z=0$)
- ${ }^{1+} \mathrm{k}_{\mathrm{x}} \mathrm{x}={ }^{1}{ }^{-\mathrm{k}_{\mathrm{x}} \mathrm{x}}={ }^{2} \mathrm{k}_{\mathrm{x}} \mathrm{x}$
- For the reflected wave
- $\sin \theta_{1}=\sin \theta_{1}$ - Law of reflection
- $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ - Snell's Law ($n \sin \theta$ is conserved)

Complex Refractive Index

- If n_{2} is complex (conductor, etc) then life gets fun!!
$-\sin \theta_{2}=n_{1} \sin \theta_{1} /\left(n_{2}+i \kappa_{2}\right)$
- Leads to the following expression for the propagation
$-\omega / c\left[x n_{1} \sin \theta_{1}+z p\left(n_{2} \cos q-k_{2} \sin q\right)\right.$
$\left.+i z p\left(k_{2} \cos q+n_{2} \sin q\right)\right]$
- p, q are functions of $n_{1}, n_{2}, k_{2}, \theta_{1}$ but not x, z
- wave propagates spatially as $\exp \left(\mathbf{i} \mathbf{k}_{2} . \mathbf{r}\right)$
- amplitude given by imaginary part
- phase given by real part

Inhomogeneous Waves

- Wave propagates as
- $\omega / c\left[x n_{1} \sin \theta_{1}+z p\left(n_{2} \cos q-k_{2} \sin q\right)\right.$ $\left.+\operatorname{izp}\left(\mathrm{K}_{2} \cos \mathrm{q}+\mathrm{n}_{2} \sin \mathrm{q}\right)\right]$
- amplitude given by complex part of equation
- surfaces of constant amplitude given by $z=$ constant
- phase given by real part
- surfaces of constant phase given by
$x n_{1} \sin \theta_{1}+z p\left(n_{2} \cos q-k_{2} \sin q\right)=$ constant
- surfaces of constant phase not parallel to surfaces of constant amplitude
- inhomogeneous waves

Boundary Conditions

- Boundary conditions at the interface
- Boundary conditions for dielectrics
- Tangential E and H fields are continuous
- $\left({ }^{1+} E+{ }^{1-} E\right) \times \mathbf{n}={ }^{2} E \times n$
- $\left({ }^{1+} \mathrm{H}+{ }^{1-} \mathrm{H}\right) \times \mathbf{n}={ }^{2} \mathrm{H} \times \mathbf{n}$
$-\left({ }^{1+} \mathbf{k} \times{ }^{1+} E\right) \times \mathbf{n}+\left({ }^{1} k \times{ }^{1-} E\right) \times \mathbf{n}=\left({ }^{2} k \times{ }^{2} E\right) \times \mathbf{n}$
- $1^{\text {st }}$ Case - Electric field parallel to interface
- transverse electric (TE)
- s-polarised
- $2^{\text {nd }}$ Case - Magnetic field parallel to interface
- transverse magnetic field
- p-polarised - (magnets have poles)

Boundary Conditions

TE Wave Reflection/Transmission

- Substitute in equations (assuming that $\mu_{1}=\mu_{2}$)
- ${ }^{1+} E_{0}+{ }^{1-} E_{0}={ }^{2} E_{0}$
- ${ }^{1+} E_{0}{ }^{1+} k \cos \theta_{1}-{ }^{1-} E_{0}{ }^{1-} k \cos \theta_{1}={ }^{2} E_{0}{ }^{2} k \cos \theta_{2}$
- Substitute for $k=2 \pi / \lambda_{0} n$
$-{ }^{1-} E_{0} /{ }^{1+} E_{0}=\left[\mathrm{n}_{1} \cos \theta_{1}-\mathrm{n}_{2} \cos \theta_{2}\right] /\left[\mathrm{n}_{1} \cos \theta_{1}+\mathrm{n}_{2} \cos \theta_{2}\right]$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=\left[2 \mathrm{n}_{1} \cos \theta_{1}\right] /\left[\mathrm{n}_{1} \cos \theta_{1}+\mathrm{n}_{2} \cos \theta_{2}\right]$
- Substitute from Snell's Law
$-{ }^{1-} E_{0} /{ }^{1+} E_{0}=\sin \left(\theta_{2}-\theta_{1}\right) / \sin \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right)$
- Fresnel Relations

At Normal Incidence

- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=\sin \left(\theta_{2}-\theta_{1}\right) / \sin \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right)$
- At normal incidence - expressions are zero!!
- or are they?
- as θ-> 0
$-{ }^{1-} E_{0} /{ }^{1+} E_{0}->\left(\theta_{2}-\theta_{1}\right) /\left(\theta_{2}+\theta_{1}\right)->\left(n_{1}-\mathrm{n}_{2}\right) /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
$-{ }^{2} E_{0} /{ }^{1+} E_{0}->2 \theta_{2} /\left(\theta_{2}+\theta_{1}\right)->2 n_{1} /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$

Energy Transmission

- The energy reflection R, is given by...
- resolve Poynting vector along normal
- - n. $<^{1-} \mathrm{S}>/ \mathrm{n} .<^{1+} \mathrm{S}>$

$$
\begin{aligned}
& =\left(\left.\cos \theta_{1} n_{1}\right|^{1-} E_{0^{2}}\right) /\left(\left.\left.\cos \theta_{1} n_{1}\right|^{1+} E_{0}\right|^{2}\right)=\left.\left.\right|^{1-} E_{0}\right|^{2} /\left.\left.\right|^{1+} E_{0}\right|^{2} \\
& =\sin ^{2}\left(\theta_{2}-\theta_{1}\right) / \sin ^{2}\left(\theta_{2}+\theta_{1}\right) .
\end{aligned}
$$

- The energy transmission T , is given by...
- resolve Poynting vector along normal
- $\mathrm{n} .<^{2} \mathrm{~S}>/ \mathrm{n} .<{ }^{1+} \mathrm{S}>$

$$
\begin{aligned}
& =\left(\left.\left.\cos \theta_{2} n_{2}\right|^{2} E_{0}\right|^{2}\right) /\left(\left.\left.\cos \theta_{1} n_{1}\right|^{1+} E_{0}\right|^{2}\right) \\
& =\sin 2 \theta_{2} \sin 2 \theta_{1} / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)
\end{aligned}
$$

- Notice that $\mathrm{R}+\mathrm{T}=1$

At Normal Incidence

- $R=\left(n_{2}-n_{1}\right)^{2} /\left(n_{2}+n_{1}\right)^{2}$
$-\mathrm{T}=4 \mathrm{n}_{1} \mathrm{n}_{2} /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)^{2}$
- $\quad R+T=1$

Summary for a TE wave

- For a dielectric interface there is no phase change $(0, \pi)$
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=\sin \left(\theta_{2}-\theta_{1}\right) / \sin \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right)$
- At normal incidence
$-{ }^{1-} E_{0} /{ }^{1+} E_{0}->\left(\theta_{2}-\theta_{1}\right) /\left(\theta_{2}+\theta_{1}\right)->\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right) /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}->2 \theta_{2} /\left(\theta_{2}+\theta_{1}\right)->2 n_{1} /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
- The reflected power ratio
- $R=\sin ^{2}\left(\theta_{2}-\theta_{1}\right) / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- The trasmitted power ratio
$-\mathrm{T}=\sin 2 \theta_{2} \sin 2 \theta_{1} / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- At normal incidence
- $R=\left(n_{2}-n_{1}\right)^{2} /\left(n_{2}+n_{1}\right)^{2}, T=4 n_{1} n_{2} /\left(n_{2}+n_{1}\right)^{2}$

The Other Case (TM Waves)

- Maxwell's Equations are (nearly) symmetrical in E, H if there are no free charges
- Any solution for E,H can be written for H,E if we interchange $-\mu, \epsilon$ at the same time
- So if for the TE case we have (assuming that $\mu_{1}=\mu_{2}$)
- ${ }^{1+} E_{0}+{ }^{1-} E_{0}={ }^{2} E_{0}$
- ${ }^{1+} E_{0}{ }^{1+} k \cos \theta_{1}-{ }^{1-} E_{0}{ }^{1-} k \cos \theta_{1}={ }^{2} E_{0}{ }^{2} k \cos \theta_{2}$
- for the TM case it is...
- ${ }^{1+} k{ }^{1+} E_{0}+{ }^{1-} k{ }^{1-} E_{0}={ }^{2} k^{2} E_{0}$
- ${ }^{1+} E_{0} \cos \theta_{1}-{ }^{1-} E_{0} \cos \theta_{1}={ }^{2} E_{0} \cos \theta_{2}$
- And the solution proceeds...

Summary for a TM wave

- For a dielectric interface there is no phase change ($0, \pi$)
- ${ }^{1} E_{0} /{ }^{1+} E_{0}=\tan \left(\theta_{1}-\theta_{2}\right) / \tan \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right) / \cos \left(\theta_{1}-\theta_{2}\right)$
- At normal incidence
$-{ }^{1-} E_{0} /{ }^{1+} E_{0} \rightarrow\left(\theta_{1}-\theta_{2}\right) /\left(\theta_{2}+\theta_{1}\right) \rightarrow\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
$-{ }^{2} E_{0} /{ }^{1+} E_{0} \rightarrow 2 \theta_{1} \theta_{2} /\left(\theta_{2}+\theta_{1}\right) \rightarrow 2 n_{1} /\left(n_{2}+n_{1}\right)$
- The reflected power ratio
- $R=\tan ^{2}\left(\theta_{1}-\theta_{2}\right) \tan ^{2}\left(\theta_{2}+\theta_{1}\right)$
- The trasmitted power ratio
- $\mathrm{T}=\sin 2 \theta_{2} \sin 2 \theta_{1} / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- At normal incidence
- $R=\left(n_{1}-n_{2}\right)^{2} /\left(n_{2}+n_{1}\right)^{2}, T=4 n_{1} n_{2} /\left(n_{2}+n_{1}\right)^{2}$

Critical Angle

- $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ - Snell's Law ($n \sin \theta$ is conserved)
- If $\left(n_{1} / n_{2}\right) \sin \theta_{1}>1$ then θ_{2} does not exist?
- There is no transmitted ray
- reflection must be perfect!!

Brewster's Angle

- For a TM wave the reflected power ratio
- $R=\tan ^{2}\left(\theta_{1}-\theta_{2}\right) / \tan ^{2}\left(\theta_{2}+\theta_{1}\right)$
- If $\left(\theta_{2}+\theta_{1}\right)=\pi / 2$ then $R=0$
- Perfect Transmission (TM only)
- For a TE wave the reflected power ratio
$-R=\sin ^{2}\left(\theta_{2}-\theta_{1}\right) / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- no minimum

Phase Changes

- For TE waves
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=\sin \left(\theta_{2}-\theta_{1}\right) / \sin \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right)$
- Phase change on transmission is 0
- Phase change on reflection is 0 if $\theta_{2}>\theta_{1}$, п if $\theta_{2}<\theta_{1}$
- For TM waves
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=\tan \left(\theta_{1}-\theta_{2}\right) / \tan \left(\theta_{2}+\theta_{1}\right)$
$-{ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right) / \cos \left(\theta_{1}-\theta_{2}\right)$
- Phase change on transmission is 0
- Phase change on reflection
- 0 if $\left(\theta_{2}+\theta_{1}\right)<\pi / 2$ (less than Brewster's)
- $\quad \pi$ if $\left(\theta_{2}+\theta_{1}\right)>\pi / 2$ (greater than Brewster's)

