Lecture 9	Reflection at a Boundary
Transmission and Reflection	 A boundary is defined as a place where something is discontinuous Half the work is sorting out what is continuous and what is discontinuous at the boundary At an optical boundary the refractive index n changes Leads to a wave returning (reflected) and a wave ongoing (transmitted)
 Reflection at a Boundary Continuous across the boundary frequency Continuous at the boundary spatial variation For a dielectric tangential E field tangential H field 	 Specific Boundary Consider a boundary at z=0 with a plane wave incident on it angle of incidence θ wrt to z-axis (normal) electric vector in the x-z plane No y variation We must have in the incident waves 1^k_x = 1^ksinθ₁ 1^k_z = 1^kcosθ₁

Specific Boundary	 At the interface k₁.r - ωt = k₁.r - ωt = k₂.r - ωt no y components no z component at interface (z=0) ¹⁴k_x x = ¹·k_x x = ²k_x x For the reflected wave sinθ₁ = sinθ₁ Law of reflection n₁ sinθ₁ = n₂ sinθ₂ - Snell's Law (n sinθ is conserved)
 If n₂ is complex (conductor, etc) then life gets fun!! sinθ₂ = n₁ sinθ₁ / (n₂ + iκ₂) Leads to the following expression for the propagation ω/c [x n₁ sinθ₁ + z p (n₂ cos q - κ₂sin q) + izp(κ₂ cos q + n₂ sin q)] p, q are functions of n₁, n₂, κ₂, θ₁ but not x, z wave propagates spatially as exp(i k₂ . r) amplitude given by imaginary part phase given by real part 	 Inhomogeneous Waves Wave propagates as ω/c [x n₁ sinθ₁ + z p (n₂ cos q - κ₂sin q) + izp(κ₂ cos q + n₂ sin q)] amplitude given by complex part of equation surfaces of constant amplitude given by z=constant phase given by real part surfaces of constant phase given by x n₁ sinθ₁ + z p (n₂ cos q - κ₂sin q) = constant surfaces of constant phase not parallel to surfaces of constant amplitude inhomogeneous waves

Boundary Conditions

- Boundary conditions at the interface
- Boundary conditions for dielectrics
 - Tangential E and H fields are continuous
 - $(^{1+}E + ^{1-}E) \times n = {}^{2}E \times n$
 - $(^{1+}H + ^{1-}H) \times n = ^{2}H \times n$
 - $({}^{1+}k \times {}^{1+}E) \times n + ({}^{1-}k \times {}^{1-}E) \times n = ({}^{2}k \times {}^{2}E) \times n$
- 1st Case Electric field parallel to interface
 - transverse electric (TE)
 - s-polarised
- 2nd Case Magnetic field parallel to interface
 - transverse magnetic field
 - p-polarised -(magnets have poles)

Boundary Conditions θ_1 θ_1 ¹k $^{2}\mathbf{k}$

TE Wave Reflection/Transmission

- Substitute in equations (assuming that $\mu_1 = \mu_2$)

 - ${}^{1+}E_0 + {}^{1-}E_0 = {}^{2}E_0$ ${}^{1+}E_0 {}^{1+}k\cos\theta_1 {}^{1-}E_0 {}^{1-}k\cos\theta_1 = {}^{2}E_0 {}^{2}k\cos\theta_2$
- Substitute for $k = 2\pi/\lambda_0 n$
 - ${}^{1-}E_0 / {}^{1+}E_0 = [n_1 \cos\theta_1 n_2 \cos\theta_2] / [n_1 \cos\theta_1 + n_2 \cos\theta_2]$
 - ${}^{2}\breve{E_{0}} / {}^{1+}\breve{E_{0}} = [2 n_{1} \cos \theta_{1}] / [n_{1} \cos \theta_{1} + n_{2} \cos \theta_{2}]$
- Substitute from Snell's Law
 - ${}^{1-}E_0 / {}^{1+}E_0 = \sin(\theta_2 \theta_1) / \sin(\theta_2 + \theta_1)$
 - ${}^{2}E_{0} / {}^{1+}E_{0} = 2 \cos \theta_{1} \sin \theta_{2} / \sin (\theta_{2} + \theta_{1})$
 - Fresnel Relations

At Normal Incidence

- ${}^{1}E_0 / {}^{1}E_0 = \sin(\theta_2 \theta_1) / \sin(\theta_2 + \theta_1)$
- ${}^{2}E_{0}/{}^{1+}E_{0} = 2\cos\theta_{1}\sin\theta_{2}/\sin(\theta_{2}+\theta_{1})$
- At normal incidence expressions are zero!! - or are they?

$$\begin{array}{l} - & \mathrm{as} \; \theta \mathrel{\rightarrow} 0 \\ & - & {}^{1-}E_0 \; / \; {}^{1+}E_0 \mathrel{\rightarrow} (\theta_2 \mathrel{-} \theta_1) / (\theta_2 \mathrel{+} \theta_1) \mathrel{\rightarrow} (\mathsf{n}_1 \mathrel{-} \mathsf{n}_2) / (\mathsf{n}_2 \mathrel{+} \mathsf{n}_1) \\ & - & {}^{2}E_0 \; / \; {}^{1+}E_0 \mathrel{\rightarrow} 2 \; \theta_2 / (\theta_2 \mathrel{+} \theta_1) \mathrel{\rightarrow} 2\mathsf{n}_1 / (\mathsf{n}_2 \mathrel{+} \mathsf{n}_1) \end{array}$$

Energy Transmission	At Normal Incidence
 The energy reflection R, is given by resolve Poynting vector along normal - n.<¹·S>/n.<¹·S> = (cosθ₁ n₁ ¹·E₀ ²)/(cosθ₁ n₁ ¹+E₀ ²) = ¹·E₀ ²/ ¹+E₀ ² = sin²(θ₂ - θ₁)/sin²(θ₂ + θ₁) The energy transmission T, is given by resolve Poynting vector along normal n.<²S>/n.<¹⁺S> = (cosθ₂ n₂ ²E₀ ²)/(cosθ₁ n₁ ¹+E₀ ²) = sin2θ₂ sin2θ₁ / sin²(θ₂ + θ₁) Notice that R + T = 1 	- $R = (n_2 - n_1)^2 / (n_2 + n_1)^2$ - $T = 4n_1 n_2 / (n_2 + n_1)^2$ - $R + T = 1$
Summary for a TE wave	The Other Case (TM Waves)
 For a dielectric interface there is no phase change (0,π) ¹⁻E₀ / ¹⁺E₀ = sin(θ₂ - θ₁)/sin(θ₂ + θ₁) ²E₀ / ¹⁺E₀ = 2 cosθ₁ sinθ₂/sin(θ₂ + θ₁) At normal incidence ¹⁻E₀ / ¹⁺E₀ -> (θ₂ - θ₁)/(θ₂ + θ₁) -> (n₁ - n₂)/(n₂ + n₁) ²E₀ / ¹⁺E₀ -> 2 θ₂/(θ₂ + θ₁) -> 2n₁/(n₂ + n₁) The reflected power ratio R = sin²(θ₂ - θ₁)/sin²(θ₂ + θ₁) The trasmitted power ratio T = sin2θ₂ sin2θ₁ / sin²(θ₂ + θ₁) At normal incidence R = (n₂ - n₁)²/(n₂ + n₁)², T = 4n₁n₂/(n₂ + n₁)² 	 Maxwell's Equations are (nearly) symmetrical in E, H if there are no free charges Any solution for E,H can be written for H,E if we interchange -μ, ε at the same time So if for the TE case we have (assuming that μ₁ = μ₂) - ¹⁺E₀ + ¹⁻E₀ = ²E₀ - ¹⁺E₀ ¹⁺k cosθ₁ - ¹⁻E₀ ¹⁻k cosθ₁ = ²E₀ ²k cosθ₂ for the TM case it is - ¹⁺k¹⁺E₀ + ¹⁻k¹⁻E₀ = ²k²E₀ - ¹⁺E₀ cosθ₁ - ¹⁻E₀ cosθ₁ = ²E₀ cosθ₂ And the solution proceeds

Summary for a TM wave

- For a dielectric interface there is no phase change $(0,\pi)$ - ${}^{1-}E_0 / {}^{1+}E_0 = \tan(\theta_1 - \theta_2)/\tan(\theta_2 + \theta_1)$ - ${}^{2}E_0 / {}^{1+}E_0 = 2\cos\theta_1 \sin\theta_2/\sin(\theta_2 + \theta_1)/\cos(\theta_1 - \theta_2)$ - At normal incidence - ${}^{1-}E_0 / {}^{1+}E_0 -> (\theta_1 - \theta_2)/(\theta_2 + \theta_1) -> (n_2 - n_1)/(n_2 + n_1)$ - ${}^{2}E_0 / {}^{1+}E_0 -> 2\theta_1 \theta_2/(\theta_2 + \theta_1) -> 2n_1/(n_2 + n_1)$ - The reflected power ratio - R = $\tan^2(\theta_1 - \theta_2)/\tan^2(\theta_2 + \theta_1)$ - The trasmitted power ratio - T = $\sin 2\theta_2 \sin 2\theta_1 / \sin^2(\theta_2 + \theta_1)$ - At normal incidence - R = $(n_1 - n_2)^2/(n_2 + n_1)^2$, T = $4n_1n_2/(n_2 + n_1)^2$	 n₁ sinθ₁ = n₂ sinθ₂ - Snell's Law (n sinθ is conserved) If (n₁/n₂)sinθ₁ > 1 then θ₂ does not exist? There is no transmitted ray reflection must be perfect!!
Brewster's Angle - For a TM wave the reflected power ratio - $R = tan^2(\theta_1 - \theta_2)/tan^2(\theta_2 + \theta_1)$ - If $(\theta_2 + \theta_1) = \pi/2$ then $R = 0$ - Perfect Transmission (TM only) - For a TE wave the reflected power ratio - $R = sin^2(\theta_2 - \theta_1)/sin^2(\theta_2 + \theta_1)$ - no minimum	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Critical Angle