Lecture 10

Reflection at Dielectric and Conducting Interfaces

Boundary Conditions

- Boundary conditions at the interface
- Boundary conditions for dielectrics
- Tangential E and H fields are continuous
- $\left({ }^{1+} E+{ }^{1-E}\right) \times \mathbf{n}={ }^{2} E \times n$
- $\left({ }^{1+} \mathrm{H}+{ }^{1-} \mathrm{H}\right) \times \mathbf{n}={ }^{2} \mathrm{H} \times \mathbf{n}$
- ($\left.{ }^{1+} \mathrm{k} \times{ }^{1+} \mathrm{E}\right) \times \mathbf{n}+\left({ }^{1} \mathrm{k} x{ }^{1-} \mathrm{E}\right) \times \mathbf{n}=\left({ }^{2} \mathbf{k} \times{ }^{2} \mathrm{E}\right) \times \mathbf{n}$
- $1^{\text {st }}$ Case - Electric field parallel to interface
- transverse electric (TE)
- s-polarised
- $2^{\text {nd }}$ Case - Magnetic field parallel to interface
- transverse magnetic field
- p-polarised - (magnets have poles)

Summary for a TE wave

- For a dielectric interface there is no phase change ($0, \pi$)
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=\sin \left(\theta_{2}-\theta_{1}\right) / \sin \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right)$
- At normal incidence
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}->\left(\theta_{2}-\theta_{1}\right) /\left(\theta_{2}+\theta_{1}\right)->\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right) /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}->2 \theta_{2} /\left(\theta_{2}+\theta_{1}\right)->2 \mathrm{n}_{1} /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
- The reflected power ratio
- $R=\sin ^{2}\left(\theta_{2}-\theta_{1}\right) / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- The trasmitted power ratio
- $\mathrm{T}=\sin 2 \theta_{2} \sin 2 \theta_{1} / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- At normal incidence
- $\mathrm{R}=\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)^{2} /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)^{2}, \mathrm{~T}=4 \mathrm{n}_{1} \mathrm{n}_{2} /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)^{2}$

Summary for a TM wave

- For a dielectric interface there is no phase change $(0, \pi)$
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=\tan \left(\theta_{1}-\theta_{2}\right) / \tan \left(\theta_{2}+\theta_{1}\right)$
- ${ }^{2} E_{0} /{ }^{1+} E_{0}=2 \cos \theta_{1} \sin \theta_{2} / \sin \left(\theta_{2}+\theta_{1}\right) / \cos \left(\theta_{1}-\theta_{2}\right)$
- At normal incidence
$-{ }^{1-} E_{0} /{ }^{1+} E_{0}->\left(\theta_{1}-\theta_{2}\right) /\left(\theta_{2}+\theta_{1}\right)->\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) /\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)$
$-{ }^{2} E_{0} /{ }^{1+} E_{0} \rightarrow 2 \theta_{1} \theta_{2} /\left(\theta_{2}+\theta_{1}\right) \rightarrow 2 n_{1} /\left(n_{2}+n_{1}\right)$
- The reflected power ratio
$-R=\tan ^{2}\left(\theta_{1}-\theta_{2}\right) / \tan ^{2}\left(\theta_{2}+\theta_{1}\right)$
- The trasmitted power ratio
- $\mathrm{T}=\sin 2 \theta_{2} \sin 2 \theta_{1} / \sin ^{2}\left(\theta_{2}+\theta_{1}\right)$
- At normal incidence
- $R=\left(n_{1}-n_{2}\right)^{2} /\left(n_{2}+n_{1}\right)^{2}, T=4 n_{1} n_{2} /\left(n_{2}+n_{1}\right)^{2}$

Critical Angle

- $\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$ - Snell's Law ($\mathrm{n} \sin \theta$ is conserved)
- If $\left(n_{1} / n_{2}\right) \sin \theta_{1}>1$ then θ_{2} is not real
- The Critical Angle is the special value of incident light that
makes $\theta_{2}=\pi / 2$ for a normally incident beam
- We define $\sin \theta_{\mathrm{c}}=\mathrm{n}_{2} / \mathrm{n}_{1}$ for a normal incidence
- Must be moving from high refractive index to low
- $n_{1}>n_{2}$
- There is no transmitted ray
- reflection must be perfect!!
- Is there no transmitted ray?
- What about the fields at the discontinuity?

Evanescent TE Waves

- What's $\cos \theta_{2}$?
- Snell's law: $\sin \theta_{2}=\left(n_{1} / n_{2}\right) \sin \theta_{1}=\sin \theta_{1} / \sin \theta_{c}$
- $\cos ^{2} \theta_{2}=\left(1-\left(n_{1} / n_{2}\right)^{2} \sin ^{2} \theta_{1}\right)=\left(1-\sin ^{2} \theta_{1} / \sin ^{2} \theta_{c}\right)$
- $\cos \theta_{2}$ is imaginary
- let $\beta^{2}={ }^{2} k^{2}\left(\sin ^{2} \theta_{1} / \sin ^{2} \theta_{c}-1\right)=-{ }^{2} k^{2} \cos ^{2} \theta_{2}$
- The transmitted wave propagates spatially as $\exp \left(\mathrm{i}^{2} \mathbf{k}\right.$. r)
- $\exp \left(i\left(x^{2} k \sin \theta_{2}+z^{2} k \cos \theta_{2}\right)\right.$
- $\exp (-\beta z) \exp \left(i\left(x^{1} k \sin \theta_{1}\right)\right)$
- Wave decays on space scale $1 / \beta$
- for glass $n_{2}=1.5$ interface with air $n_{1}=1$
- $\theta_{c}=\sin ^{-1}(2 / 3)=41.8^{\circ}$
- at $45^{\circ}, 1 / p$ about $\lambda_{0} / 2$
- Evanescent wave is the wave that penetrates the second medium decaying as $1 / \beta$

Evanescent TE Waves - Phase Changes

- Look at boundary conditions
- ${ }^{1+} E_{0}+{ }^{1} E_{0}={ }^{2} E_{0}$
- ${ }^{1+} E_{0}{ }^{1+} k \cos \theta_{1}-{ }^{1-} E_{0}{ }^{1} k \cos \theta_{1}={ }^{2} E_{0}{ }^{2} k \cos \theta_{2}$
- $\beta=\mathrm{i}^{2} \mathrm{k} \cos \theta_{2}, \quad \alpha={ }^{1} \mathrm{k} \cos \theta_{1}$
- Solve for ${ }^{1-} E_{0},{ }^{2} E_{0}$
- ${ }^{2} E_{0} I^{1+} E_{0}=2 \beta /(\alpha-i \beta)$
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=(\beta+\mathrm{iq}) /(\alpha-\mathrm{i} \beta)$
- There are phase changes in the reflected beam
- Look at R, T
- $\mathrm{T}=0$ because there is no z component in transmitted wave
- $\mathrm{R}=\left|{ }^{1-} E_{0} /^{1+} E_{0}\right|^{2}=\left|\left({ }^{1-} E_{0} /^{1+} E_{0}\right)\left({ }^{1-} E_{0} /^{1+} E_{0}\right)^{*}\right|=1$
- Total internal reflection as all beam energy is reflected
- Occurs when $\theta_{1}>\theta_{c}$

Frustrated Total Internal Reflection FTIR

- Have shown that field penetrates less dense medium during TIR (to a small extent)
- Consider an air/glass interface and an incident beam: θ_{1} $>\theta_{c}$
- Imagine that another piece of glass is pressed against the reflective surface
- What happens?
- The effect is remarkably similar to barrier penetration or quantum tunneling
- Beam splitters
- Particularly applicable in microwave where there is 10^{5} times the penetration (do the calcs!)

