Lecture 10

Reflection at Dielectric and Conducting Interfaces

Boundary Conditions

- Boundary conditions at the interface
- Boundary conditions for dielectrics
- Tangential E and H fields are continuous
 - $(^{1+}E + {}^{1-}E) \times n = {}^{2}E \times n$
 - $(^{1+}H + ^{1-}H) \times n = {}^{2}H \times n$
 - $({}^{1+}k \times {}^{1+}E) \times n + ({}^{1-}k \times {}^{1-}E) \times n = ({}^{2}k \times {}^{2}E) \times n$
- 1st Case Electric field parallel to interface
 - transverse electric (TE)
 - s-polarised
- 2nd Case Magnetic field parallel to interface
 - transverse magnetic field
 - p-polarised (magnets have poles)

Summary for a TE wave

- For a dielectric interface there is no phase change (0,π)
 - $= \frac{1}{2}E_0 / \frac{1}{2}E_0 = \sin(\theta_2 \theta_1)/\sin(\theta_2 + \theta_1)$
 - $= {}^{2}E_{0} / {}^{1+}E_{0} = 2\cos\theta_{1}\sin\theta_{2} / \sin(\theta_{2} + \theta_{1})$
- At normal incidence
 - $= \frac{1}{2} E_0 / \frac{1}{2} E_0 -> (\theta_2 \theta_1) / (\theta_2 + \theta_1) -> (n_1 n_2) / (n_2 + n_1)$
 - $= {}^{2}E_{0} / {}^{1+}E_{0} \rightarrow 2 \theta_{2} / (\theta_{2} + \theta_{1}) \rightarrow 2n_{1} / (n_{2} + n_{1})$
- The reflected power ratio
 - $\blacksquare R = \sin^2(\theta_2 \theta_1) / \sin^2(\theta_2 + \theta_1)$
- The trasmitted power ratio
 - $T = \sin 2\theta_2 \sin 2\theta_1 / \sin^2(\theta_2 + \theta_1)$
- At normal incidence
 - $R = (n_2 n_1)^2 / (n_2 + n_1)^2$, $T = 4n_1 n_2 / (n_2 + n_1)^2$

Summary for a TM wave

- For a dielectric interface there is no phase change $(0,\pi)$ - ${}^{1^{+}}E_0 = \tan(\theta_1 - \theta_2)/\tan(\theta_2 + \theta_1)$ - ${}^{2^{-}}E_0 / {}^{1^{+}}E_0 = 2 \cos\theta_1 \sin\theta_2/\sin(\theta_2 + \theta_1)/\cos(\theta_1 - \theta_2)$ - At normal incidence - ${}^{1^{-}}E_0 / {}^{1^{+}}E_0 -> (\theta_1 - \theta_2)/(\theta_2 + \theta_1) -> (n_2 - n_1)/(n_2 + n_1)$ - ${}^{2^{-}}E_0 / {}^{1^{+}}E_0 -> 2 \theta_1 \theta_2/(\theta_2 + \theta_1) -> 2n_1/(n_2 + n_1)$ - The reflected power ratio - R = tan ² (\theta_1 - \theta_2)/tan ² (\theta_2 + \theta_1) - The trasmitted power ratio - T = sin2\theta_2 sin2\theta_1 / sin ² (\theta_2 + \theta_1) - At normal incidence - R = (n_1 - n_2) ² /(n_2 + n_1) ² , T = 4n_1n_2/(n_2 + n_1) ²	 n₁ sinθ₁ = n₂ sinθ₂ - Snell's Law (n sinθ is conserved) If (n₁/n₂)sinθ₁ > 1 then θ₂ is not real The Critical Angle is the special value of incident light that makes θ₂=π/2 for a normally incident beam We define sinθ_c=n₂/n₁ for a normal incidence Must be moving from high refractive index to low n₁ > n₂ There is no transmitted ray reflection must be perfect!! Is there no transmitted ray? What about the fields at the discontinuity?
 Evanescent TE Waves What's cosθ₂? Snell's law: sinθ₂=(n₁/n₂) sinθ₁ = sinθ₁/sinθ_c cos²θ₂ = (1 - (n₁/n₂)²sin²θ₁)= (1 - sin²θ₁/sin²θ_c) cosθ₂ is imaginary let β² = ²k² (sin²θ₁/sin²θ_c - 1) = - ²k² cos²θ₂ The transmitted wave propagates spatially as exp(i ²k . r) exp(i (x ²k sinθ₂ + z ²k cosθ₂) exp((i (x ¹k sinθ₁)) Wave decays on space scale 1/β for glass n₂ =1.5 interface with air n₁ = 1 θ_c = sin⁻¹(2/3) = 41.8° at 45°, 1/p about λ₀/2 Evanescent wave is the wave that penetrates the second medium decaying as 1/β 	Evanescent TE Waves - Phase Changes Look at boundary conditions ${}^{1+}E_0 + {}^{1-}E_0 = {}^{2}E_0$ ${}^{1+}E_0 + {}^{1-}E_0 = {}^{2}E_0$ ${}^{1+}E_0 + {}^{1-}E_0 = {}^{2}E_0$ ${}^{1+}E_0 + {}^{1+}K \cos\theta_1 - {}^{1-}E_0 + {}^{1-}K \cos\theta_1 = {}^{2}E_0 - {}^{2}K \cos\theta_2$ ${}^{0}\beta = i {}^{2}K \cos\theta_2, \alpha = {}^{1}K \cos\theta_1$ Solve for ${}^{1-}E_0 , {}^{2}E_0$ ${}^{2}E_0 / {}^{1+}E_0 = 2\beta/(\alpha - i\beta)$ ${}^{1-}E_0 / {}^{1+}E_0 = (\beta + iq)/(\alpha - i\beta)$ There are phase changes in the reflected beam Look at R, T ${}^{-}T = 0$ because there is no z component in transmitted wave ${}^{-}R = {}^{1-}E_0 / {}^{1+}E_0 ^2 = ({}^{1-}E_0 / {}^{1+}E_0)({}^{1-}E_0 / {}^{1+}E_0)^* = 1$ Total internal reflection as all beam energy is reflected ${}^{-}Occurs$ when $\theta_1 > \theta_c$

Critical Angle

Frustrated Total Internal Reflection FTIR

- Have shown that field penetrates less dense medium during TIR (to a small extent)
- Consider an air/glass interface and an incident beam: $\theta_1 > \theta_c$
- Imagine that another piece of glass is pressed against the reflective surface
- What happens?
- The effect is remarkably similar to barrier penetration or quantum tunneling
- Beam splitters
- Particularly applicable in microwave where there is 10⁵ times the penetration (do the calcs!)