Lecture 11

Conducting Interfaces and Rough Surfaces

Boundary Conditions

The Story So Far...

- The incident wave (Lecture 9)
 - ${}^{1+}\mathbf{k} = ({}^{1+}\mathbf{k}_x, {}^{1+}\mathbf{k}_y, {}^{1+}\mathbf{k}_z) = ({}^{1}\mathbf{k}\sin\theta_1, 0, {}^{1}\mathbf{k}\cos\theta_1)$
- At the interface
 - Require spatial and temporal continuity
 - ${}^{1+}k \cdot r \omega t = {}^{1-}k \cdot r \omega t = {}^{2}k \cdot r \omega t$
 - no y components
 - no z component at interface (z=0)
 - $= {}^{1+}k_x x = {}^{1-}k_x x = {}^{2}k_x x$
 - All the x components are equal
- We get =>
 - $\sin\theta_1 = \sin\theta_1$ Law of reflection
 - $n_1 \sin\theta_1 = n_2 \sin\theta_2$ Snell's Law (n sin θ is conserved)

The Story So Far (II)...

- Boundary conditions for fields at the interface (Lecture 10)
- Tangential E and H fields are continuous
 - $(^{1+}E + ^{1-}E) \times n = {}^{2}E \times n$
 - $(^{1+}H + ^{1-}H) \times n = {}^{2}H \times n$
 - $(^{1+}k \times ^{1+}E) \times n + (^{1-}k \times ^{1-}E) \times n = (^{2}k \times ^{2}E) \times n$
- We resolved components of **E** or **H** fields for ¹⁻**k** and ²**k**.
- But, we noticed that there was a critical angle $\sin\theta_c = n_2/n_1$
- where there was no spatially varying z component of ²k.

Evanescent TE Waves

- What's $\cos\theta_2$?
- Snell's law: $\bar{\sin\theta_2} = (n_1/n_2) \sin\theta_1 = \sin\theta_1/\sin\theta_c$
- $\cos^2\theta_2 = (1 (n_1/n_2)^2 \sin^2\theta_1) = (1 \sin^2\theta_1/\sin^2\theta_2)$
 - $\cos\theta_2$ is imaginary
 - let $\beta^2 = {}^2k^2 (\sin^2\theta_1 / \sin^2\theta_2 1) = -{}^2k^2 \cos^2\theta_2$
- Transmitted wave propagates spatially as exp(i²k.r)
- $\exp(i(x^2k\sin\theta_2 + z^2k\cos\theta_2))$
- exp (- βz) exp(i (x ¹k sin θ_1))
- Wave decays on space scale 1/β
- for glass $n_2 = 1.5$ interface with air $n_1 = 1$
 - $\theta_c = \sin^{-1}(2/3) = 41.8^{\circ}$
 - at 45°, 1/p about $\lambda_0/2$
- Evanescent wave is the wave that penetrates the second medium decaying as $1/\beta$

Evanescent TE Waves - Phase Changes

- Look at boundary conditions
 - $\blacksquare \quad {}^{1+}E_0 + {}^{1-}E_0 = {}^2E_0$
 - $= {}^{1+}E_0^{-1+}k\cos\theta_1 {}^{1-}E_0^{-1-}k\cos\theta_1 = {}^{2}E_0^{-2}k\cos\theta_2$ = $\beta = i {}^{2}k\cos\theta_2, \quad \alpha = {}^{1}k\cos\theta_1$
- Solve for ${}^{1}E_0$, ${}^{2}E_0$

 - = ${}^{2}E_{0}/{}^{1+}E_{0} = 2\beta/(\alpha i\beta)$ = ${}^{1-}E_{0}/{}^{1+}E_{0} = (\beta + iq)/(\alpha i\beta)$
 - There are phase changes in the reflected beam
- Look at R. T
 - T = 0 because there is no z component in transmitted wave
 - $R = |{}^{1-}E_0/{}^{1+}E_0|^2 = |({}^{1-}E_0/{}^{1+}E_0)({}^{1-}E_0/{}^{1+}E_0)^*| = 1$
- Total internal reflection as all beam energy is reflected
- Occurs when $\theta_1 > \theta_c$

Reflection at a Conducting Interface

- Equations get complex need approximations
- Normal Incidence gets rid of angle effects
- $\mu_1 = \mu_2 = \mu_0$ (what about ferromagnetics?)
- Large conductivity σ (not bad for metals)

Reflection at a Conducting Interface

- Boundary Conditions
 - $\blacksquare {}^{1+}E_0 + {}^{1-}E_0 = {}^{2}E_0$
 - $= {}^{1+}E_0({}^{1+}k/\mu_1)\cos\theta_1 {}^{1-}E_0({}^{1-}k/\mu_1)\cos\theta_1 = {}^{2}E_0({}^{2}k/\mu_2)$ $\cos\theta_{2}$
- Not yet assuming that $\mu_1 = \mu_2$
- Now ${}^{2}k$ is complex
 - ${}^{2}k^{2} = \omega^{2}(\mu\epsilon) = \omega^{2}(\mu_{2}\epsilon_{2})(1 + i\sigma_{2}/(\epsilon_{2}\omega))$
- Can get the angles from
 - $\sin\theta_2 = n_1 \sin\theta_1 / (n_2 + i\kappa_2)$
 - But it makes the solution messy
 - Assume normal incidence!

Reflection at a Conducting Interface

- **Boundary Conditions**
 - $\blacksquare \quad {}^{1+}E_0 + {}^{1-}E_0 = {}^2E_0$
 - $= {}^{1+}E_0({}^{1+}k/\mu_1) {}^{1-}E_0({}^{1-}k/\mu_1) = {}^{2}E_0({}^{2}k/\mu_2)$ = ${}^{2}k^2 = \omega^2(\mu_2\varepsilon_2)(1 + i\sigma_2/(\varepsilon_2\omega))$
- Still very complicated!!
- In metals at low frequencies contributions of bound electrons negligible compared with conducting electrons
 - So assume $\sqrt{\varepsilon_2} = n + i\kappa = \sqrt{(i\sigma_2/\omega \varepsilon_0)}$
 - $\sqrt{i} = (1 + i)/\sqrt{2}$
 - ${}^{2}k = (1 + i) \sqrt{(\sigma_2 \mu_2 \omega/2)}$
- Soluble (sort of!!)

Reflection at a Conducting Interface

- The solution is left as an exercise...
- We can solve for the reflected component $({}^{1-}E_0)/{}^{1+}E_0$
- $R = |({}^{1-}E_0)({}^{1+}E_0)({}^{1-}E_0)^*| \approx 1 2\sqrt{(2\epsilon_1\omega/\sigma_2)}$
 - The higher the conductivity the higher is R
 - The lower the frequency the higher is R
- Good conductors have little or no z-component to the reflected beam
- $T = 2 \sqrt{(2\epsilon_1 \omega / \sigma_2)}$ energy is dissapated in metal as Joule heating
- Assumed that the conductivity is the DC value

A Simple Example

- We can extend our earlier analysis for a simple case of light incident on a metal in a vacuum. $n_1=1$, $n_2 = n + i\kappa$
- The Reflectance R becomes
- $\mathsf{R} = |({}^{1-}E_0/{}^{1+}E_0)({}^{1-}E_0/{}^{1+}E_0)^*| = ((\mathsf{n}-1)^2 + \kappa^2)/((\mathsf{n}+1)^2 + \kappa^2)$
- $\kappa = 0 \Rightarrow$ dielectric case back
- $\kappa >> n => Reflected wave \rightarrow 1$
- Sodium $\lambda = 589.3$ nm, n=0.04, $\kappa = 2.4$ T=0.1
- Bulk Tin λ = 589.3nm, n=1.5, κ =5.3 T=0.2
- Gallium $\lambda = 589.3$ nm, n=3.7, κ=5.4 T=0.3

Reflection from Non-Flat Surfaces

- All surfaces can be considered to be superposition of sinusoidal surfaces (Fourier analysis)
- A surface height function h(x) can be considered as Fourier components (given some conditions)
- The general series is of the form
 - $z = h(x) = (1 / 2\pi) \int g(q) \exp(iqx) dq$
- If h(x) is periodic
 - $z = h(x) = \sum G(n) \exp(i n 2\pi x/\Lambda)$ for $n = \{-\infty, ..., \infty\}$
- Consider one such surface for which $G(n) \neq 0$ for only 2 components

The Sinusoidal Surface

- Sinusoidal surface of perfect conductor (T = 0)
- Not strictly rigorous, but a limiting case
 - Sum of incident and reflected fields = 0
 - ${}^{1+}E_o \exp(i(k_x x + k_z z)) + {}^{1-}E_o (x,z) = 0$
 - on the surface $z = h(x) = h_0 \cos (2 \pi x/\Lambda)$
 - $h(x) = h_0/2 (\exp(2 \pi i x/\Lambda) + \exp(-2 \pi i x/\Lambda))$
- Solves at the boundary at z = h(x) to
 - ${}^{1-}E_{0}(x) = {}^{-1+}E_{0}\exp(ik_{x}x)\exp(ik_{z}h_{0}\cos(2\pi x/\Lambda))$

Reflection from Non-Flat Surfaces

- Look at simple solution for $k_z h_0 \ll 1$ (exp(x) = 1 + x)
 - $= {}^{1-}E_0(x) = {}^{1+}E_0 \exp(ik_x x)(1 + ik_z h_0 \cos(2 \pi x/\Lambda))$
 - Get the z component by conserving energy under total relfection
 - Rewrite cos as sum of two complex exponentials
 - Get three waves
 - k_x, k_x+ 2 π/Λ, k_x 2 π/Λ
 - Waves are at different angles
 - Diffraction grating
 - If we relax $k_z h_0 \ll 1$, get $k_x + 2m\pi/\Lambda$
- Rough surface can be simulated by summing sinusoids

Reflection from Non-Flat Surfaces

• Sinusoidal surface scatters at particular angles in steps of $2\pi/\Lambda$

"Real World" Reflection

 Examples of "typical" surface scattering by different types of surface (lobes represent polar diagrams of the scattered power)

