
Lecture 11

Conductin g Interfaces and 
Rough Surfaces

Boundary Conditions

The Story So Far...

# The incident wave (Lecture 9)
#

1+k = (1+kx ,
1+ky ,

1+kz ) = (1ksin21 , 0 , 1kcos21)
# At the interface

# Require spatial and temporal continuity
#

1+k . r - Tt = 1-k . r - Tt = 2k . r - Tt
# no y components
# no z component at interface (z=0)
#

1+kx x =  1-kx x = 2kx x
# All the x components are equal

# We get  =>
# sin21 = sin21-  - Law of reflection
# n1 sin21 = n2 sin22 - Snell’s Law (n sin2 is conserved)

The Story So Far (II)...

# Boundary conditions for fields at the interface (Lecture
10)

# Tangential E and H fields are continuous

# (1+E + 1-E ) x n = 2E x n
# (1+H + 1-H ) x n = 2H x n
# (1+k x 1+E) x n +(1-k x  1-E ) x n = (2k x 2E) x n

# We resolved components of E or H fields for 1-k and 2k.
# But, we noticed that there was a critical angle sin2c =

n2/n1 
# where there was no spatially varying z component of 2k.



Evanescent TE Waves

# What’s cos22?
# Snell’s law: sin22=(n1/n2) sin21 = sin21/sin2c

# cos222 = (1 - (n1/n2)
2sin221)= (1 - sin221/sin22c)

# cos22 is imaginary
# let $2 = 2k2 (sin221/sin22c - 1) = - 2k2 cos222

# Transmitted wave propagates spatially as exp(i 2k . r)
# exp( i (x 2k sin22 + z 2k cos22)
# exp (-$z) exp(i (x 1k sin21))
# Wave decays on space scale 1/$
# for glass n2 =1.5 interface with air n1 = 1

# 2c = sin-1(2/3) = 41.8o

# at 45o , 1/p about 80/2
# Evanescent wave is the wave that penetrates the

second medium decaying as 1/$

Evanescent TE Waves - Phase Changes

# Look at boundary conditions
#

1+E0 + 1-E0 = 2E0

#
1+E0 

1+k cos21  -  
1-E0 

1-k cos21 = 2E0 
2k cos22

# $ = i 2k cos22, " =   1k cos21

# Solve for 1-E0 ,
2E0

#
2E0 /

1+E0 = 2$/(" - i$)
#

1-E0 /
1+E0 = ($ + iq)/(" - i$)

# There are phase changes in the reflected beam
# Look at R, T

# T = 0 because there is no z component in transmitted
wave

# R = |1-E0 /
1+E0|

2 = |(1-E0 /
1+E0)(

1-E0 /
1+E0)*| = 1

# Total internal reflection as all beam energy is reflected
# Occurs when 21 > 2c

Reflection at a Conducting Interface

# Equations get complex - need approximations
# Normal Incidence - gets rid of angle effects
# µ1 = µ2 = µ0 (what about ferromagnetics?)
# Large conductivity  F (not bad for metals)

Reflection at a Conducting Interface

# Boundary Conditions
#

1+E0 + 1-E0 = 2E0

#
1+E0 (

1+k /µ1) cos21  -  
1-E0 (

1-k /µ1) cos21 = 2E0 (
2k / µ2)

cos22

# Not yet assuming that  µ1 = µ2

# Now 2k is complex
#

2k2 = T 2 (µ,) = T 2 (µ2,2) ( 1 + iF2/(,2T))
# Can get the angles from

# sin22 =  n1 sin21 / ( n2 + i62)
# But it makes the solution messy
# Assume normal incidence!



Reflection at a Conducting Interface

# Boundary Conditions
#

1+E0 + 1-E0 = 2E0

#
1+E0 (

1+k /µ1) - 
1-E0 (

1-k /µ1) = 2E0 (
2k / µ2)

#
2k2 = T 2 (µ2,2) ( 1 + iF2/(,2T))

# Still very complicated!!
# In metals at low frequencies contributions of bound

electrons negligible compared with conducting
electrons
# So assume  o,2 = n + i6 = %(iF2/T ,0)
# oi = (1 + i)/o2
#

2k = ( 1 + i ) %(F2 µ2T/2)
# Soluble (sort of!!)

Reflection at a Conducting Interface

# The solution is left as an exercise...
# We can solve for the reflected component (1-E0 /

1+E0)
# R = |(1-E0 /

1+E0)(
1-E0 /

1+E0)*| .  1 - 2 %(2,1T/F2)
# The higher the conductivity the higher is R
# The lower the frequency the higher is R

# Good conductors have little or no z-component to the
reflected beam 

# T = 2 %(2,1T/F2) energy is dissapated in metal as Joule
heating

# Assumed that the conductivity is the DC value

A Simple Example

# We can extend our earlier analysis for a simple case of
light incident on a metal in a vacuum. n1=1, n2 = n + i6

# The Reflectance R becomes
# R = |(1-E0 /

1+E0)(
1-E0 /

1+E0)*| = ((n - 1)2 + 62)/((n + 1)2 + 62)
# 6 = 0 => dielectric case back
# 6 >> n => Reflected wave 6 1
# Sodium 8 = 589.3nm, n=0.04, 6=2.4 T=0.1
# Bulk Tin 8 = 589.3nm, n=1.5, 6=5.3 T=0.2
# Gallium 8 = 589.3nm, n=3.7, 6=5.4 T=0.3

Reflection from Non-Flat Surfaces

# All surfaces can be considered to be superposition of
sinusoidal surfaces (Fourier analysis)

# A surface height function h(x) can be considered as
Fourier components (given some conditions)

# The general series is of the form
# z = h(x) = (1 / 2B)Ig(q) exp(iqx) dq

#  If h(x) is periodic
# z = h(x) = 3 G(n) exp(i n2Bx/7) for n = {-4, ..., 4}

# Consider one such surface for which G(n)�0 for only 2
components



The Sinusoidal Surface

# Sinusoidal surface of perfect conductor (T = 0)
# Not strictly rigorous, but a limiting case
# Sum of incident and reflected fields = 0

#
1+E0 exp(i(kxx+kzz))+ 1-E0 (x,z)= 0
# on the surface z = h(x) = h0 cos (2 Bx/7)
# h(x) = h0/2 ( exp(2 Bix/7) + exp(-2 Bix/7))

# Solves at the boundary at z = h(x) to
#

1-E0 (x)= - 1+E0 exp(ikxx)exp( ikz h0 cos(2 Bx/7))

Reflection from Non-Flat Surfaces

# Look at simple solution for kz h0 << 1  ( exp(x) = 1 + x )
#  1-E0 (x)= - 1+E0 exp(ikxx)(1 + ikz h0 cos(2 Bx/7))
# Get the z component by conserving energy under

total relfection
# Rewrite cos as sum of two complex exponentials
# Get three waves

# kx,  kx+ 2 B/7, kx -  2 B/7
# Waves are at different angles
# Diffraction grating
# If we relax kz h0 << 1, get kx +  2mB/7

# Rough surface can be simulated by summing sinusoids

Reflection from Non-Flat Surfaces

# Sinusoidal surface scatters at particular angles in steps of 2B/7

“Real World” Reflection

# Examples of “typical” surface scattering by different types of
surface (lobes represent polar diagrams of the scattered power) 


