Lecture 11

Conducting Interfaces and Rough Surfaces

Boundary Conditions

The Story So Far (II)...

- Boundary conditions for fields at the interface (Lecture 10)
- Tangential E and H fields are continuous
- $\left({ }^{1+} E+{ }^{1-} E\right) \times \mathbf{n}={ }^{2} E \times n$
- $\left({ }^{1+} \mathrm{H}+{ }^{1-} \mathrm{H}\right) \times \mathbf{n}={ }^{2} \mathrm{H} \times \mathbf{n}$
- ($\left.{ }^{1+} \mathbf{k} x{ }^{1+} \mathrm{E}\right) \times \mathbf{n}+\left({ }^{1-} \mathrm{k} x{ }^{-1-} \mathrm{E}\right) \times \mathbf{n}=\left({ }^{2} \mathbf{k} x^{2} \mathrm{E}\right) \times \mathbf{n}$
- We resolved components of \mathbf{E} or \mathbf{H} fields for ${ }^{1-} \mathbf{k}$ and ${ }^{2} \mathbf{k}$.
- But, we noticed that there was a critical angle $\sin \theta_{c}=$ $\mathrm{n}_{2} / \mathrm{n}_{1}$
- where there was no spatially varying z component of ${ }^{2} \mathbf{k}$.

Evanescent TE Waves

- What's $\cos \theta_{2}$?
- Snell's law: $\sin \theta_{2}=\left(n_{1} / n_{2}\right) \sin \theta_{1}=\sin \theta_{1} / \sin \theta_{c}$
- $\cos ^{2} \theta_{2}=\left(1-\left(n_{1} / n_{2}\right)^{2} \sin ^{2} \theta_{1}\right)=\left(1-\sin ^{2} \theta_{1} / \sin ^{2} \theta_{c}\right)$
- $\cos \theta_{2}$ is imaginary
- let $\beta^{2}={ }^{2} k^{2}\left(\sin ^{2} \theta_{1} / \sin ^{2} \theta_{c}-1\right)=-{ }^{2} k^{2} \cos ^{2} \theta_{2}$
- Transmitted wave propagates spatially as $\exp \left(\mathrm{i}^{2} \mathbf{k} . r\right)$
- $\exp \left(\mathrm{i}\left(\mathrm{x}^{2} \mathrm{k} \sin \theta_{2}+\mathrm{z}^{2} \mathrm{k} \cos \theta_{2}\right)\right.$
- $\exp (-\beta z) \exp \left(i\left(x^{1} k \sin \theta_{1}\right)\right)$
- Wave decays on space scale $1 / \beta$
- for glass $\mathrm{n}_{2}=1.5$ interface with air $\mathrm{n}_{1}=1$
- $\theta_{c}=\sin ^{-1}(2 / 3)=41.8^{\circ}$
- at $45^{\circ}, 1 / p$ about $\lambda_{0} / 2$
- Evanescent wave is the wave that penetrates the second medium decaying as $1 / \beta$

Evanescent TE Waves - Phase Changes

- Look at boundary conditions
- ${ }^{1+} E_{0}+{ }^{1-} E_{0}={ }^{2} E_{0}$
- ${ }^{1+} E_{0}{ }^{1+} k \cos \theta_{1}-{ }^{1-} E_{0}{ }^{1-} k \cos \theta_{1}={ }^{2} E_{0}{ }^{2} k \cos \theta_{2}$
- $\beta=i^{2} k \cos \theta_{2}, \quad \alpha={ }^{1} k \cos \theta_{1}$
- Solve for ${ }^{1-} E_{0},{ }^{2} E_{0}$
- ${ }^{2} E_{0} /^{1+} E_{0}=2 \beta /(\alpha-i \beta)$
- ${ }^{1-} E_{0} /{ }^{1+} E_{0}=(\beta+i q) /(\alpha-i \beta)$
- There are phase changes in the reflected beam
- Look at R, T
- $\mathrm{T}=0$ because there is no z component in transmitted wave
- $\mathrm{R}=\left|{ }^{1-} E_{0} /^{1+} E_{0}\right|^{2}=\left|\left({ }^{1-} E_{0} /^{1+} E_{0}\right)\left({ }^{1-} E_{0} /^{1+} E_{0}\right)^{\star}\right|=1$
- Total internal reflection as all beam energy is reflected
- Occurs when $\theta_{1}>\theta_{c}$

Reflection at a Conducting Interface

- Equations get complex - need approximations
- Normal Incidence - gets rid of angle effects
- $\mu_{1}=\mu_{2}=\mu_{0}$ (what about ferromagnetics?)
- Large conductivity σ (not bad for metals)

Reflection at a Conducting Interface

- Boundary Conditions
- ${ }^{1+} E_{0}+{ }^{1}-E_{0}={ }^{2} E_{0}$
- ${ }^{1+} E_{0}\left({ }^{1+} k / \mu_{1}\right) \cos \theta_{1}-{ }^{1-} E_{0}\left({ }^{1-} k / \mu_{1}\right) \cos \theta_{1}={ }^{2} E_{0}\left({ }^{2} k / \mu_{2}\right)$ $\cos \theta_{2}$
- Not yet assuming that $\mu_{1}=\mu_{2}$
- Now ${ }^{2} k$ is complex
- ${ }^{2} k^{2}=\omega^{2}(\mu \epsilon)=\omega^{2}\left(\mu_{2} \epsilon_{2}\right)\left(1+i \sigma_{2} /\left(\epsilon_{2} \omega\right)\right)$
- Can get the angles from
- $\sin \theta_{2}=n_{1} \sin \theta_{1} /\left(n_{2}+i k_{2}\right)$
- But it makes the solution messy
- Assume normal incidence!

Reflection at a Conducting Interface

- Boundary Conditions
- ${ }^{1+} E_{0}+{ }^{1-} E_{0}={ }^{2} E_{0}$
- ${ }^{1+} E_{0}\left({ }^{1+} k / \mu_{1}\right)-{ }^{1}-E_{0}\left({ }^{1-} k / \mu_{1}\right)={ }^{2} E_{0}\left({ }^{2} k / \mu_{2}\right)$
- ${ }^{2} k^{2}=\omega^{2}\left(\mu_{2} \epsilon_{2}\right)\left(1+i \sigma_{2} /\left(\epsilon_{2} \omega\right)\right)$
- Still very complicated!!
- In metals at low frequencies contributions of bound electrons negligible compared with conducting electrons
- So assume $\sqrt{ } \epsilon_{2}=\mathrm{n}+\mathrm{ik}=\sqrt{ }\left(\mathrm{io}_{2} / \omega \epsilon_{0}\right)$
- $\sqrt{ } \mathrm{i}=(1+\mathrm{i}) / \sqrt{ } 2$
- ${ }^{2} k=(1+i) \sqrt{ }\left(\sigma_{2} \mu_{2} \omega / 2\right)$
- Soluble (sort of!!)

Reflection at a Conducting Interface

- The solution is left as an exercise...
- We can solve for the reflected component $\left({ }^{1-} E_{0} I^{1+} E_{0}\right)$
- $\mathrm{R}=\left|\left({ }^{1-} E_{0} /{ }^{1+} E_{0}\right)\left({ }^{1-} E_{0} /^{1+} E_{0}\right)^{\star}\right| \approx 1-2 \sqrt{ }\left(2 \epsilon_{1} \omega / \sigma_{2}\right)$
- The higher the conductivity the higher is R
- The lower the frequency the higher is R
- Good conductors have little or no z-component to the reflected beam
- $\mathrm{T}=2 \sqrt{ }\left(2 \epsilon_{1} \omega / \sigma_{2}\right)$ energy is dissapated in metal as Joule heating
- Assumed that the conductivity is the DC value

A Simple Example

- We can extend our earlier analysis for a simple case of light incident on a metal in a vacuum. $n_{1}=1, n_{2}=n+i к$
- The Reflectance R becomes
- $\left.\left.\mathrm{R}=\mid\left({ }^{1-} E_{0}\right)^{1+} E_{0}\right)\left({ }^{1-} E_{0}\right)^{1+} E_{0}\right)^{\star} \mid=\left((\mathrm{n}-1)^{2}+\mathrm{k}^{2}\right) /\left((\mathrm{n}+1)^{2}+\mathrm{k}^{2}\right)$
- $\mathrm{k}=0=>$ dielectric case back
- $\mathrm{k} \gg \mathrm{n}=>$ Reflected wave $\rightarrow 1$
- Sodium $\lambda=589.3 n m, n=0.04, \quad \mathrm{~K}=2.4 \mathrm{~T}=0.1$
- Bulk Tin $\lambda=589.3 \mathrm{~nm}, \mathrm{n}=1.5, \quad \mathrm{k}=5.3 \mathrm{~T}=0.2$
- Gallium $\quad \lambda=589.3 n m, n=3.7, \quad \mathrm{k}=5.4 \quad \mathrm{~T}=0.3$

Reflection from Non-Flat Surfaces

- All surfaces can be considered to be superposition of sinusoidal surfaces (Fourier analysis)
- A surface height function $\mathrm{h}(\mathrm{x})$ can be considered as Fourier components (given some conditions)
- The general series is of the form
- $z=h(x)=(1 / 2 \pi) \int g(q) \exp (i q x) d q$
- If $h(x)$ is periodic
- $z=h(x)=\sum \mathrm{G}(\mathrm{n}) \exp (\mathrm{i} \mathrm{n} 2 \pi \mathrm{x} / \Lambda)$ for $\mathrm{n}=\{-\infty, \ldots, \infty\}$
- Consider one such surface for which $G(n) \neq 0$ for only 2 components

The Sinusoidal Surface

- Sinusoidal surface of perfect conductor $(T=0)$
- Not strictly rigorous, but a limiting case
- Sum of incident and reflected fields $=0$
- ${ }^{1+} E_{0} \exp \left(\mathrm{i}\left(\mathrm{k}_{\mathrm{x}} \mathrm{x}+\mathrm{k}_{\mathrm{z}} \mathrm{z}\right)\right)+{ }^{1-} E_{0}(\mathrm{x}, \mathrm{z})=0$
- on the surface $z=h(x)=h_{0} \cos (2 \pi x / \Lambda)$
- $h(x)=h_{0} / 2(\exp (2 \pi i x / \Lambda)+\exp (-2 \pi i x / \Lambda))$
- Solves at the boundary at $z=h(x)$ to
- ${ }^{1-} E_{0}(\mathrm{x})=-{ }^{1+} E_{0} \exp \left(\mathrm{ik}_{\mathrm{x}} \mathrm{x}\right) \exp \left(\mathrm{ik}_{\mathrm{z}} \mathrm{h}_{0} \cos (2 \pi \mathrm{x} / \Lambda)\right)$

Reflection from Non-Flat Surfaces

- Look at simple solution for $\mathrm{k}_{\mathrm{z}} \mathrm{h}_{0} \ll 1(\exp (\mathrm{x})=1+\mathrm{x})$
- ${ }^{1-} E_{0}(\mathrm{x})=-{ }^{1+} E_{0} \exp \left(\mathrm{ik}_{\mathrm{x}} \mathrm{x}\right)\left(1+\mathrm{ik}_{\mathrm{z}} \mathrm{h}_{0} \cos (2 \pi \mathrm{x} / \Lambda)\right)$
- Get the z component by conserving energy under total relfection
- Rewrite cos as sum of two complex exponentials
- Get three waves
- $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{x}}+2 \pi / \Lambda, \mathrm{k}_{\mathrm{x}}-2 \pi / \Lambda$
- Waves are at different angles
- Diffraction grating
- If we relax $k_{z} h_{0} \ll 1$, get $k_{x}+2 m \pi / \Lambda$
- Rough surface can be simulated by summing sinusoids

Reflection from Non-Flat Surfaces

- Sinusoidal surface scatters at particular angles in steps of $2 \pi / \Lambda$

"Real World" Reflection

- Examples of "typical" surface scattering by different types of surface (lobes represent polar diagrams of the scattered power)

