Lecture 12

True Lies - What Happened to B and D

The Fundamental Equations of Electrostatics

- The F between two charges q₁ and q₂ separated by a distance r is given by...
 - $\mathbf{F} = 1/(4\pi\epsilon_0) (q_1q_2/r^2) \mathbf{r}$
 - r is a unit vector
- The field **E** is given by
 - $F(r) = E(r) q_2$
 - By superposition principle force on q₂ is sum of all other forces
 - **E** (**r**) = $(1/4\pi\epsilon_0) \sum_i (q_i/r_i^2) r_i$
 - E is directly related to F
 - E is always the force acting on a unit charge
- In a vacuum we can integrate over a closed surface
 - $\int \mathbf{E} \cdot \mathbf{dS} = \int div[\mathbf{E}] d\tau = (1/\varepsilon_0) \int \rho d\tau$
 - Flux through Closed Surface <=> Charge Enclosed
 - Consequence of inverse square law nature of E (r)
 - div[**E**] = ρ/ϵ_0 (in a vacuum) [Gauss]

In a Polarising Medium

- In a dielectric medium there are polarisation effects which act to add a volume dipole moment effect
- Electric field acts to polarise neutral atoms (+ve and -ve charges pulled in different directions)
- If the dipole moment per unit volume is P
- It can be shown that the field due to P is given by P/ε₀
- Total field is therefore **E** + **P**/ ε_0
 - and Div[**E** + **P**/ ε_0] = ρ/ε_0
 - $\text{Div}[\varepsilon_0 \mathbf{E} + \mathbf{P}] = \rho = \text{Div}[\mathbf{D}]$
 - **D** = $\varepsilon_0 \mathbf{E} + \mathbf{P}$ Definition of Displacement **D**
 - ρ is external or free charge

Scalar Potential

Using the vector identity $r/r^2 = -Grad[1/r]$ We can write the electric field in terms of a scalar potential E() = - Grad[]

Units and Other Issues

- E is related to the force (Newtons) units of N C⁻¹
- Since $\int \mathbf{D} \cdot \mathbf{dS} = \int \text{Div}[\mathbf{D}] \, \mathbf{d} \, \mathbf{T} = \int \rho \, \mathbf{d} \, \mathbf{T}$
 - Units of D are C m²
 - **D** = $\varepsilon_0 \mathbf{E} + \mathbf{P}$
- Units of permittivity e₀ are C² m⁻² N⁻¹
- Potential is related to E by E = Grad[Φ]
- Units of **E** are also V m⁻¹ = C m⁻²

The Approximations - Where We Came In

- $P = \chi \varepsilon_0 E$ for a many materials the polarisation linear with the applied field
- But not for
 - pyroelectrics
 - piezoelectrics
 - ferroelectrics
 - All these generate a polarisation on application of heat, stress, etc

The Approximations - Where We Came In

- If material is isotropic then $P = \chi \varepsilon_0 E$
 - and we write $D = \varepsilon E$
 - Note that sometimes the definition is
 - **D** = $\varepsilon \varepsilon_0$ **E** which makes ε dimensionless
- Div[D] = ρ = Div[ε E] in this approximation
- ALWAYS $Div[D] = Div[P + \varepsilon_0 E] = \rho$
- ISOTROPY $\text{Div}[\mathbf{E}] = \rho / \epsilon$ (or $= \rho / \epsilon_0 \epsilon$)
- VACUUM $\text{Div}[\mathbf{E}] = \rho / \varepsilon_0$

The Fundamental Equations of Electromagnetics

- The F between two current elements I₁ds₁ and I₂ds₂ separated by a distance r is given by (δs = n δs)
 - dF = $\mu_0/(4\pi)$ (I_1I_2/r^2) {ds₂ x (ds₁ x r)}
- The induction B is given by
 - $dF = I_2(ds_2 \times dB_1)$
 - B is directly related to F
 - **B** is always the force acting on a unit current element
- In a vacuum we can integrate over a closed surface (Stokes Theorem)
 - $\oint \mathbf{B} \cdot \mathbf{ds} = \int \text{Curl}[\mathbf{B}] \cdot \mathbf{dS} = \mu_0 \int \mathbf{J} \cdot \mathbf{dS}$
 - $\blacksquare I = \int J \cdot dS$
 - Curl[**B**] = $\mu_0 \mathbf{J}$ (in a vacuum)
 - Confirmed by experiment down to atomic scale

In a Magnetising Medium

- Units and Other Issues In a magnetic medium there are magnetisation effects which add a volume magnetisation induction B is related to the force (Newtons) - units of N A⁻¹m⁻¹ If the magnetisation per unit volume is M ■ Since [H. ds = [Curl[H]. dS = [J. dS =] Units of H are A m⁻¹ Can be shown that induction due to M is given by $-\mu_0$ M ■ Units of µ₀ are N A⁻² [kg m C⁻²] Compute currents due to volume element of M Remember that A = C sec⁻¹ Total field is therefore B - μ₀ M • and Curl[**B** - μ_0 **M**] = μ_0 **J** • Curl[$\mathbf{B} / \mu_0 - \mathbf{M}$] = J = Curl[\mathbf{H}]
 - **B** $/\mu_0$ **M** = **H** Definition of Field **H**

The Approximations - Where We Came In

- $M = \chi H$ and χ is scalar for a many materials
- But not for
 - Ferromagnetics
 - Materials with hysteresis

The Approximations - Where We Came In

- If material is isotropic then $M = \chi H$
 - and we write $\mathbf{B} = \mu \mathbf{H}$
 - Note that sometimes the definition is
 - **B** = $\mu \mu_0$ **H** which makes μ dimensionless
- $Curl[H] = J = Curl[B/\mu_0]$ in this approximation
- ALWAYS $Curl[H] = Curl[M - B/\mu_0] = J$
- ISOTROPY Curl[**B**] = μ **J** (or = μ μ_0 **J**)
- VACUUM Curl[**B**] = $\mu_0 \mathbf{J}$

Why We Do What We Do?

- Maxwell's equations would involve six quantities
- B, H, E, D, J, ρ
 But two pairs are proportional in our context
 Simplify and choose the items which make life easiest
 - **Η**, **Ε**, **J**, **ρ**
 - Slightly odd since only one (E) is directly related to force for example