Lecture 12

True Lies - What Happened to B and D

The Fundamental Equations of Electrostatics

- The F between two charges q_{1} and q_{2} separated by a distance r is given by...
- $F=1 /\left(4 \pi \epsilon_{0}\right)\left(q_{1} q_{2} / r^{2}\right) r$
- r is a unit vector
- The field E is given by
- $F(r)=E(r) q_{2}$
- By superposition principle force on q_{2} is sum of all other forces
- $E(r)=\left(1 / 4 \pi \epsilon_{0}\right) \sum_{i}\left(q_{i} / r_{i}^{2}\right) r_{i}$
- E is directly related to F
- E is always the force acting on a unit charge
- In a vacuum we can integrate over a closed surface
- $\int E \cdot d S=\int \operatorname{div}[E] d t=\left(1 / \epsilon_{0}\right) \int \rho d t$
- Flux through Closed Surface <=> Charge Enclosed
- Consequence of inverse square law nature of E (r)
- $\operatorname{div}[E]=\rho / \epsilon_{0}$ (in a vacuum) [Gauss]

In a Polarising Medium

- In a dielectric medium there are polarisation effects which act to add a volume dipole moment effect
- Electric field acts to polarise neutral atoms (+ve and -ve charges pulled in different directions)
- If the dipole moment per unit volume is P
- It can be shown that the field due to P is given by P / ϵ_{0}
- Total field is therefore $E+P / \epsilon_{0}$
- and $\operatorname{Div}\left[E+P / \epsilon_{0}\right]=\rho / \epsilon_{0}$
- $\operatorname{Div}\left[\epsilon_{0} \mathrm{E}+\mathrm{P}\right]=\rho=\operatorname{Div}[\mathrm{D}]$
- $D=\epsilon_{0} E+P$ - Definition of Displacement D
- ρ is external or free charge

Scalar Potential

Using the vector identity $\mathbf{r} / \mathbf{r}^{2}=-\operatorname{Grad}[1 / r]$ We can write the electric field in terms of a scalar potential $E()=-\operatorname{Grad}[]$

Units and Other Issues

- E is related to the force (Newtons) - units of $\mathrm{N} \mathrm{C}^{-1}$
- Since $\int D \cdot d S=\int \operatorname{Div}[D] d T=\int \rho d T$
- Units of D are Cm^{-2}
- $D=\epsilon_{0} E+P$
- Units of permittivity ϵ_{0} are $\mathrm{C}^{2} \mathrm{~m}^{-2} \mathrm{~N}^{-1}$
- Potential is related to E by $E=-G r a d[\Phi]$
- Units of E are also $\mathrm{V} \mathrm{m}^{-1} \equiv \mathrm{C} \mathrm{m}^{-2}$

The Approximations - Where We Came In

- $\mathbf{P}=X \epsilon_{0} \mathrm{E}$ for a many materials the polarisation linear with the applied field
- But not for
- pyroelectrics
- piezoelectrics
- ferroelectrics
- All these generate a polarisation on application of heat, stress, etc

The Approximations - Where We Came In

- If material is isotropic then $P=X \epsilon_{0} E$
- and we write $D=\epsilon E$
- Note that sometimes the definition is
- $D=\epsilon \epsilon_{0} E$ which makes ϵ dimensionless
- $\operatorname{Div}[D]=\rho=\operatorname{Div}[\epsilon E]$ in this approximation
- ALWAYS
$\operatorname{Div}[D]=\operatorname{Div}\left[P+\epsilon_{0} E\right]=\rho$
- ISOTROPY
$\operatorname{Div}[E]=\rho / \epsilon \quad\left(\mathrm{or}=\rho / \epsilon_{0} \epsilon\right)$
- VACUUM
$\operatorname{Div}[E]=\rho / \epsilon_{0}$

The Fundamental Equations of Electromagnetics

- The F between two current elements $\mathrm{I}_{1} \mathrm{ds}_{1}$ and $\mathrm{I}_{2} \mathrm{ds}_{2}$ separated by a distance r is given by ($\delta \mathbf{s} \equiv \mathbf{n} \delta \mathrm{s}$)
- $\mathbf{d F}=\mu_{0} /(4 \pi)\left(\mathrm{I}_{1} \mathrm{I}_{2} / \mathrm{r}^{2}\right)\left\{\mathbf{d s}_{2} \mathbf{x}\left(\mathrm{ds}_{1} \times \mathbf{r}\right)\right\}$
- The induction B is given by
- $\mathrm{dF}=\mathrm{I}_{2}\left(\mathrm{ds}_{2} \mathbf{x ~ d B _ { 1 }}\right)$
- B is directly related to F
- B is always the force acting on a unit current element
- In a vacuum we can integrate over a closed surface
(Stokes Theorem)
- $\oint \mathbf{B} \cdot \mathbf{d s}=\int \operatorname{Curl}[B] . d S=\mu_{0} \int \mathbf{J} . d S$
- I = $\int J . d S$
- Curl[$\left[\right.$ B] $=\mu_{0} \mathrm{~J}$ (in a vacuum)
- Confirmed by experiment down to atomic scale

In a Magnetising Medium

- In a magnetic medium there are magnetisation effects which add a volume magnetisation induction
- If the magnetisation per unit volume is \mathbf{M}
- Can be shown that induction due to \mathbf{M} is given by $-\mu_{0} \mathbf{M}$
- Compute currents due to volume element of M
- Total field is therefore $\mathbf{B}-\mu_{0} \mathbf{M}$
- and Curl[$\left.\mathbf{B}-\mu_{0} \mathbf{M}\right]=\mu_{0} \mathbf{J}$
- Curl $\left[\mathrm{B} / \mu_{0}-\mathrm{M}\right]=\mathrm{J}=\operatorname{Curl}[\mathrm{H}]$
- $\mathbf{B} / \mu_{0}-\mathbf{M}=\mathbf{H}$ - Definition of Field \mathbf{H}

Units and Other Issues

- B is related to the force (Newtons) - units of $\mathrm{N} \mathrm{A}^{-1} \mathrm{~m}^{-1}$
- Since $\int \mathrm{H} . \mathrm{ds}=\int \mathrm{Curl}[\mathrm{H}] . \mathrm{dS}=\int \mathrm{J} . d S=1$
- Units of H are A m ${ }^{-1}$
- Units of μ_{0} are $\mathrm{NA}^{-2}\left[\mathrm{~kg} \mathrm{~m} \mathrm{C}^{-2}\right]$
- Remember that $A=C \sec ^{-1}$

The Approximations - Where We Came In

- $\mathbf{M}=x \mathbf{H}$ and X is scalar for a many materials
- But not for
- Ferromagnetics
- Materials with hysteresis

The Approximations - Where We Came In

- If material is isotropic then $\mathrm{M}=\times \mathrm{H}$
- and we write $\mathbf{B}=\mu \mathrm{H}$
- Note that sometimes the definition is
- $\mathbf{B}=\mu \mu_{0} \mathbf{H}$ which makes μ dimensionless
- $\operatorname{Curl}[\mathrm{H}]=\mathrm{J}=\operatorname{Curl}\left[\mathrm{B} / \mu_{0}\right]$ in this approximation
- ALWAYS $\operatorname{Curl}[\mathrm{H}]=\operatorname{Cur}\left[\mathrm{M}-\mathrm{B} / \mu_{0}\right]=\mathrm{J}$
- ISOTROPY Curl[B] $=\mu \mathrm{J}$ (or $\left.=\mu \mu_{0} \mathrm{~J}\right)$
- VACUUM Curl $[\mathrm{B}]=\mu_{0} \mathrm{~J}$

Why We Do What We Do?

- Maxwell's equations would involve six quantities
- B, H, E, D, J, ρ
- But two pairs are proportional in our context
- Simplify and choose the items which make life easiest
- H, E, J, ρ
- Slightly odd since only one (E) is directly related to force for example

