Lecture 13

Coherence and Interference

Interference

- Interference can only occur if the two beams have the same frequency and therefore a defined phase
- If two beams are represented by
- $E_{1}=E_{01} \exp \left(i k_{1} \cdot r-i \omega t\right)$
- $E_{2}=E_{02} \exp \left(i k_{2} \cdot r-i \omega t+i \bar{\delta}\right)$
- Then the intensity is
- $I=\left|E_{t}\right|^{2}=E_{t} \cdot E_{t}^{*}=\left|E_{01}\right|^{2}+\left|E_{02}\right|^{2}+2 E_{01} E_{02} \cos \phi$
- where $\phi=\left(k_{1}-k_{2}\right) \cdot r-\delta$
- The last term is the interference term and says that the total intensity is not necessarily the sum of the individual intensities and in fact may be larger or smaller
- What is wrong with this expression for intensity?

Young's Slits Revisited

- Why do the beams spread out? - Can't be plane waves
- Slit separation is d
- Distance to screen is z
- $\mathbf{k}_{1}-\mathbf{k}_{2} \cong \mathbf{y k d} / \mathrm{z}$
- We assume that all angles are small, then
- $\left(k_{1}-k_{2}\right) \cdot r=k y d / z$
- Intensity $\mathrm{I}=2 \mathrm{I}_{0}(1+\cos (\mathrm{kyd} / \mathrm{z}))$

Young's Slits Revisited

- Fringes die out for large angles/path differences
- Phase is not maintained over a long distance/time
- "Coherence
length/time"
- Need additional notion
of "partial coherence".
- We actually measure
 the time average of the fields which is the superposition of lots of "wavelets"
- $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \operatorname{Re}<E_{1} . E_{2}>$

Conceptual View of Coherence

Combine two E-waves from same source:

Large time shift \rightarrow Less likely to get regular re-enforcing (interference)

- Hence $\operatorname{Re}<E_{1}{ }^{*} . E_{2}>$ tends to zero over time.

Correlation

Function

- Correlation decays with characteristic time T_{c}
- Form of $\left|\mathrm{Y}_{12}(\mathrm{~T})\right|$ is often like an
 exponential decay
- Auto-correlation function (also known as self-correlation function) is linked to power spectrum $\mathrm{P}(\omega)$ through fourier transform - the Wiener-Khintchine Theorem
- $\mathscr{F}\left(\Gamma_{11}(\mathrm{~T})\right)=\mathrm{P}(\omega) \mathrm{d} \omega$
- Consider monochromatic source...
- This relationship is important for interferometers

Correlation Function

- If the two waves originate from the same source - the interference can be considered to be in time
- $\Gamma_{12}(T)=\left\langle E_{1}^{*}(t) \cdot E_{2}(t+T)\right\rangle$
- defines the "mutual coherence"
- or the "correlation function"

- $\Gamma_{11}(0) \propto I_{1}$
- $\Gamma_{11}(\infty) \rightarrow 0$
- Normalised coherence function [Remove source intensities]
- $Y_{12}(T)=\Gamma_{12}(T) / V\left(\Gamma_{11}(0) \Gamma_{22}(0)\right)$
- Time averaged intensity $=I_{1}+I_{2}+2 \sqrt{ }\left(I_{1} I_{2}\right) \operatorname{Re}\left[Y_{12}(T)\right]$
- $\left|\mathrm{Y}_{12}(\mathrm{~T})\right|=1$ complete coherence
- $0<\left|\mathrm{Y}_{12}(\mathrm{~T})\right|<1$ partial coherence
- $\left|\mathrm{Y}_{12}(\mathrm{~T})\right|=0$ complete incoherence $\{\mathrm{T} \neq 0\}$

Spatial and Temporal Correlation

- Temporal coherence
- Time is the only variable
- Length is only used along the direction of propagation
- Spatial coherence
- Links two space points, not on DOP
- One point is generally fixed.
- Consider the following situation

Spatial and Temporal Correlation

- Spatial coherence between two points is defined as:

$$
\mathrm{Y}_{12}(\mathrm{~T})=\frac{\left.<E_{1}^{*}(t) E_{2}(t+\mathrm{T})\right\rangle}{\sqrt{I_{1} I_{2}}}
$$

Each point has two components to E, BUT the sources are mutually incoherent so the cross-terms disappear in the average

$$
\mathrm{Y}_{12}(\mathrm{~T})=\frac{\left\langle E_{1 a}^{*}(t) E_{2 a}(t+\mathrm{T})\right\rangle}{\sqrt{I_{1} I_{2}}}+\frac{\left\langle E_{1 b}^{*}(t) E_{2 b}(t+\mathrm{T})\right\rangle}{\sqrt{I_{1} I_{2}}}
$$

Spatial and Temporal Correlation

- If the sources are point, monochromatic, then each term is almost a selfcoherence function

- Common form for a self-coherence function is:

$$
Y(T)=\exp (-i \omega T) \exp \left(-|T| / T_{0}\right)
$$

- where the τ is just the path difference converted to a time $\mathrm{T}_{\mathrm{x}}=\left(\mathrm{r}_{\mathrm{xa}}-\mathrm{r}_{\mathrm{xb}}\right) / \mathrm{c}$
- If we assume vertical distances \gg horizontal we find that $T_{a}-T_{b}=S P /(C L)$
- Write out the full coherence function as:

$$
\begin{aligned}
& \exp \left(-i \omega T_{a}\right) \exp \left(-\left|T_{a}\right| / T_{0}\right) \\
& \left(1+\exp \left(-i \omega\left(T_{b}-T_{a}\right)\right) \exp \left(-\left(\left|T_{b}\right|-\left|T_{a}\right|\right) / T_{0}\right) / 2\right.
\end{aligned}
$$

