Lecture 14

Ray Tracing Casting the Problem for a Computer

Optical Ray Tracing

- Assumes that light propagates as rays in straight lines
- Processes permitted in order of popularity
 - reflection
 - refraction
 - attenuation
 - polarisation
- Sign conventions
 - Many and mysterious
 - Use common sense and draw a diagram!!

Reflection at Plane Surfaces

- Every reflection at a plane surface reverses a component of the vector k
- Three orthogonal reflections reverse all three components k -> - k
- A "corner-cube" reflector of three orthogonal mirrors always reverses the beam

Prisms are Fun!

- Prisms have plane surfaces, not necessarily orthogonal
 - Prisms do two things
 - Refract the beam (dispersively)
 - Reflect the beam (coated or above critical angle)
- Every Reflection reverses a component of k
 - "reflects" the image in one dimension

Ray Deviation By Prism

- A simple case of Snell's Law
- Angle of deviation δ given by
 - $\delta = \theta + \sin^{-1}[\sin\alpha(n^2 \sin^2\theta)^{1/2} \sin\theta\cos\alpha] \alpha$
 - where α is the angle between the two prism faces
 - and θ is the angle ray makes with normal to 1st face
- Minimum deviation
 - angle $\delta = 2\theta \alpha$ (Symmetrical passage)

Refraction at Curved Surfaces

- Curved surfaces are >99% of the time spherical
 - Once you go away from spherical, what do you use?
 - Spheres have only one parameter (radius)
 - Other conics have more
- Fictions employed for sanity (in order of popularity)
 - Rotational symmetry
 - All surfaces are spherical
 - All the rays cross the axis
 - Thin lenses
 - Paraxial Rays

Approximations

- Rotational symmetry
 - all optical components are circular
- All surfaces are symmetrical
 - Once you go away from spherical, what do you use?
- All the rays cross the axis
 - No "skew" rays
 - Rays can be characterised by where they cross the axis and a slope

Approximations

- Thin lenses
 - lens is so thin that thickness and curvature can be neglected
 - Rays impact surfaces at same axial distance for all radial distances
- Paraxial Rays
 - All angles so small that tanθ=sinθ=θ, cosθ=1

Paraxial Forms

- Snell's law in paraxial, symmetric form
 - $n_1/s_1 = n_2/s_2$
 - s₁, s₂ are the distances from the surface to the intersection of the ray and the axis

- For a spherical surface ROC R
 - $n_1/s_1 + n_2/s_2 = (n_2 n_1)/R$

Paraxial Forms

- For a lens formed of two such surfaces
 - $n_1/s_1 + n_2/s_2 = (n_2 n_1)/R_1$
 - $-n_2/s_2 + n_1/s_3 = (n_1 n_2)/R_2$
 - $1/s_1 + 1/s_2 = (n_2/n_1 1)(1/R_1 + 1/R_2) = 1/f$
- Good stuff but limited!!

Ray Tracing by Computer

- Computers are stupid! (They do what you ask)
- First problem is to describe surfaces and rays
- Surfaces can be described in terms of equations
 - $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$ (sphere)
 - $z = z_0$ (x-y plane)
 - Need refractive index each side of surface
 - unless it's a reflector
- Rays as a position and the direction cosines
 - $(\mathbf{x}_0 + \lambda \mathbf{d}_x) \mathbf{i} + (\mathbf{y}_0 + \lambda \mathbf{d}_y) \mathbf{j} + (\mathbf{z}_0 + \lambda \mathbf{d}_z) \mathbf{k}$
 - $d_x^2 + d_y^2 + d_z^2 = 1$
 - $C = \mathbf{x} + \lambda \mathbf{d}$
- Every ray requires 6 parameters 3 position, 3 directions

Ray Tracing by Computer

Now need to describe the process

- Know how to do that if ray is
 - in a plane (eg x-z plane) tangentially normal to the surface (eg x-y plane)
 - Intercept with surface is at the origin
 - Easy stuff but that's not what we have!!

Ray Tracing by Computer

- Locate intersection of ray C and surface p
 - Often need to determine if
 - there is an intersection
 - which of two is needed
- Locate normal to surface n (all unit vectors, directions)
- Have incoming ray $C = p_0 + \lambda c$
- Apply Snell's Law and derive new ray
 - Know that $\mathbf{c.n} = -\cos\theta_i \operatorname{gives} \theta_i$
 - Use Snell's law for θ_r
 - If the outgoing ray is **r** then we also know $\mathbf{n}.\mathbf{r} = -\cos\theta_r$
 - We also know that c,n and r are co-planar
 - cxn = nxr
 - so can write **r** = a**c** + b**n**
 - Solve the equations for r the refracted ray
- Actual ray path is $\mathbf{R} = \mathbf{p} + \lambda \mathbf{r}$

Ray Tracing by Computer

- $c.n = -cos\theta_i gives \theta_i$
- Use Snell's law for θ_r
- If the outgoing ray is r then we also know r.n = -cosθ_r
- We also know that c,n and r are co-planar
 - cxn = nxr
 - so can write **r** = a**c** + b**n**
- $\mathbf{r} \cdot \mathbf{r} = 1 = \mathbf{a} \cdot \mathbf{c} \cdot \mathbf{n} + \mathbf{b} \cdot \mathbf{n} \cdot \mathbf{r} = \mathbf{a} \cos(\theta_i \theta_r) \mathbf{b} \cos\theta_r$
- $\mathbf{r}.\mathbf{n} = -\cos\theta_r = \mathbf{a} \cdot \mathbf{c}.\mathbf{n} + \mathbf{b} = \mathbf{a} \cdot \cos\theta_i + \mathbf{b}$
- $\mathbf{r} = (\sin\theta_r \mathbf{c} + \sin(\theta_r \theta_r)\mathbf{n})/\sin\theta_i$

Summary

- Given surface equation and ray equation S, C
- Compute point of intersection (get the right one) p
- Compute normal to surface at point of intersection n
- Apply Snell's Law
- Have new ray R
- Repeat "ad nauseam" Have to be computer for this!