Lecture 14

Ray Tracing Casting the Problem for a Computer

Optical Ray Tracing

- Assumes that light propagates as rays in straight lines
- Processes permitted - in order of popularity
- reflection
- refraction
- attenuation
- polarisation
- Sign conventions
- Many and mysterious
- Use common sense and draw a diagram!!

Reflection at Plane Surfaces

- Every reflection at a plane surface reverses a component of the vector k
- Three orthogonal reflections reverse all three components k->-k
- A "corner-cube" reflector of three orthogonal mirrors always reverses the beam

Prisms are Fun!

- Prisms have plane surfaces, not necessarily orthogonal
- Prisms do two things
- Refract the beam (dispersively)
- Reflect the beam (coated or above critical angle)
- Every Reflection reverses a component of \mathbf{k}
- "reflects" the image in one dimension

レ

Ray Deviation By Prism

- A simple case of Snell's Law
- Angle of deviation δ given by
- $\delta=\theta+\sin ^{-1}\left[\sin \alpha\left(n^{2}-\sin ^{2} \theta\right)^{1 / 2}-\sin \theta \cos \alpha\right]-\alpha$
- where α is the angle between the two prism faces
- and θ is the angle ray makes with normal to $1^{\text {st }}$ face
- Minimum deviation
angle $\delta=2 \theta-\alpha$
(Symmetrical passage)

Refraction at Curved Surfaces

- Curved surfaces are $>99 \%$ of the time spherical
- Once you go away from spherical, what do you use?
- Spheres have only one parameter (radius)
- Other conics have more
- Fictions employed for sanity (in order of popularity)
- Rotational symmetry
- All surfaces are spherical
- All the rays cross the axis
- Thin lenses
- Paraxial Rays

Approximations

- Rotational symmetry
- all optical components are circular
- All surfaces are symmetrical
- Once you go away from spherical, what do you use?
- All the rays cross the axis
- No "skew" rays
- Rays can be characterised by where they cross the axis and a slope

Approximations

- Thin lenses
- lens is so thin that thickness and curvature can be neglected
- Rays impact surfaces at same axial distance for all radial distances
- Paraxial Rays
- All angles so small that $\tan \theta=\sin \theta=\theta, \cos \theta=1$

Paraxial Forms

- Snell's law in paraxial,
symmetric form
- $\mathrm{n}_{1} / \mathrm{s}_{1}=\mathrm{n}_{2} / \mathrm{s}_{2}$
- $\mathrm{s}_{1}, \mathrm{~s}_{2}$ are the distances from the surface to the intersection of the ray and the axis
- For a spherical surface ROC R
- $\mathrm{n}_{1} / \mathrm{s}_{1}+\mathrm{n}_{2} / \mathrm{s}_{2}=\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) / \mathrm{R}$

Paraxial Forms

- For a lens formed of two such surfaces
- $\mathrm{n}_{1} / \mathrm{s}_{1}+\mathrm{n}_{2} / \mathrm{s}_{2}=\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) / \mathrm{R}_{1}$
- $-n_{2} / s_{2}+n_{1} / s_{3}=\left(n_{1}-n_{2}\right) / R_{2}$
- $1 / s_{1}+1 / s_{2}=\left(n_{2} / n_{1}-1\right)\left(1 / R_{1}+1 / R_{2}\right)=1 / f$
- Good stuff - but limited!!

Ray Tracing by Computer

- Computers are stupid! (They do what you ask)
- First problem is to describe surfaces and rays
- Surfaces can be described in terms of equations
- $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$ (sphere)
- $\mathrm{z}=\mathrm{z}_{0}$ (x - y plane)
- Need refractive index each side of surface
- unless it's a reflector
- Rays as a position and the direction cosines
- $\left(\mathrm{x}_{0}+\lambda \mathrm{d}_{\mathrm{x}}\right) \mathbf{i}+\left(\mathrm{y}_{0}+\lambda \mathrm{d}_{\mathrm{y}}\right) \mathbf{j}+\left(\mathrm{z}_{0}+\lambda \mathrm{d}_{\mathrm{z}}\right) \mathbf{k}$
- $\mathrm{d}_{\mathrm{x}}{ }^{2}+\mathrm{d}_{\mathrm{y}}{ }^{2}+\mathrm{d}_{\mathrm{z}}{ }^{2}=1$
- $\mathbf{C}=\mathrm{x}+\lambda \mathrm{d}$
- Every ray requires 6 parameters -3 position, 3 directions

Ray Tracing by Computer

- Now need to describe the process
- Know how to do that if ray is
- in a plane (eg $x-z$ plane) tangentially normal to the surface (eg x - y plane)
- Intercept with surface is at the origin
- Easy stuff - but that's not what we have!!

Ray Tracing by Computer

- Locate intersection of ray \mathbf{C} and surface p
- Often need to determine if
- there is an intersection
- which of two is needed
- Locate normal to surface \mathbf{n} (all unit vectors, directions)
- Have incoming ray $C=p_{0}+\lambda c$
- Apply Snell's Law and derive new ray
- Know that c.n $=-\cos \theta_{i}-$ gives θ_{i}
- Use Snell's law for θ_{r}
- If the outgoing ray is \mathbf{r} then we also know $\mathbf{n} \cdot \mathbf{r}=-\cos \theta_{r}$
- We also know that c, \mathbf{n} and \mathbf{r} are co-planar
- $\mathbf{c x n}=\mathbf{n x r}$
- so can write $r=a c+b n$
- Solve the equations for \mathbf{r} - the refracted ray
- Actual ray path is $R=p+\lambda r$

Ray Tracing by Computer

- c. $\mathbf{n}=-\cos \theta_{i}$ - gives θ_{i}
- Use Snell's law for θ_{r}
- If the outgoing ray is \mathbf{r} then we also know $\mathbf{r} \cdot \mathbf{n}=-\cos \theta_{r}$
- We also know that \mathbf{c}, \mathbf{n} and \mathbf{r} are co-planar
- $\mathbf{c x n}=\mathbf{n x r}$
- so can write $r=a c+b n$
- r.r = $1=a \mathbf{c} . \mathbf{n}+b \mathbf{n} . r=a \cos \left(\theta_{i}-\theta_{r}\right)-b \cos \theta_{r}$
- r. $\mathbf{n}=-\cos \theta_{r}=a \mathbf{c} . \mathbf{n}+b=a-\cos \theta_{i}+b$
- $\mathbf{r}=\left(\sin \theta_{\mathrm{r}} \mathbf{c}+\sin \left(\theta_{\mathrm{r}}-\theta_{\mathrm{r}}\right) \mathbf{n}\right) / \sin \theta_{\mathrm{i}}$

Summary

- Given surface equation and ray equation S, C
- Compute point of intersection (get the right one) p
- Compute normal to surface at point of intersection \mathbf{n}
- Apply Snell's Law
- Have new ray R
- Repeat "ad nauseam" - Have to be computer for this!

