Lecture 17

Diffraction

Why Does the Beam Spread?

- Interference in another guise?
- Because the wave equation says it has to
- Because the boundary of the wave cannot be sharp - Infinite E, H field gradients - bad
- Uncertainty principle
- Because it does - and we'd better find the math to explain it!!

Why Does the Beam Spread?

- Huygen's Principle (1678)
- Each point on the wavefront is a secondary radiator

- Wave is the envelope of the secondary radiators
- Huygen's-Fresnel Principle (1810)
- Above is OK, but also need to account for phases
- These pre-date Maxwell and are for scalar waves
- No exact solution involving e-m theory of light until Sommerfeld in 1898

The Proof

- The proof has a number of stages
- Simplify by considering scalar waves
- Green's theorem applied to scalar waves
- Relate value of field at point inside surface to surface values
- More simplifications
- Choose a tractable case
- Consider the general case
- Some interesting consequences (Babinet's principle)

Green's Theorem Applied to Scalar Waves

$$
\iint_{S}(W \nabla U-U \nabla W) \cdot d S=\iiint_{V}\left(W \nabla^{2} U-U \nabla^{2} W\right) d V
$$

- Consequence of the divergence theorem
- $f U$ and W satisfy the scalar wave equation

$$
\begin{aligned}
& \nabla^{2} U=\frac{1}{v^{2}} \frac{\partial^{2} U}{\partial t^{2}}=-\frac{1}{v^{2}} \omega^{2} U \\
& \nabla^{2} U=\frac{1}{v^{2}} \frac{\partial^{2} U}{\partial t^{2}}=-\frac{1}{v^{2}} \omega^{2} U
\end{aligned}
$$

- where the last is true only for time dependence $\exp (-i \omega t)$
- In that case RHS $=0=$ LHS

$$
\iint_{S}(W \nabla U-U \nabla W) \cdot d S=0
$$

Relate Point Inside Surface to Surface

- Let W be a spherical wave converging on origin P which is inside the surface (assume all time dependence as $\exp (-i \omega t)$)

$$
W=W_{0} \frac{1}{r} e^{i k r}
$$

- Integrate over a closed surface
- exclude the origin because W is infinite there
- use a little sphere of radius ε to isolate origin

Relate Point Inside Surface to Surface

- consider integration over little sphere first

$$
\iint_{S_{\varepsilon}}\left(\left.W(\varepsilon) \frac{\delta U}{\delta r}\right|_{\varepsilon}-\left.U \frac{\delta W}{\delta r}\right|_{\varepsilon}\right) \varepsilon^{2} d \Omega=4 \pi U_{P}
$$

- First term goes because U is locally smooth
- Second term simplifies as $r, \varepsilon->0$
- So if we now consider the full equation...

$$
U_{P}=-\frac{1}{4 \pi} \iint\left(U \frac{\delta}{\delta n} \frac{e^{i k r}}{r}-\frac{e^{i k r}}{r} \frac{\delta U}{\delta n}\right) d S
$$

- This equation relates value at origin to value on surface
- BUT origins can be moved so it represents any point
- $\partial / \partial \mathrm{n}$ is differential wrt normal to surface

More Simplifications/Tractable Case

- Consider a screen with a hole - Integration surface is screen + hole + surface encompassing point of interest, P
- Assume U, $\nabla \mathrm{U}$ are non-zero only at hole
- Have same values as if screen wasn't there
- Assume $\mathrm{U}, \nabla \mathrm{U}$ are 0 elsewhere on surface
- So surface integral is only across hole
- U is a spherical wavefront from far side of hole

$$
U=U_{0} \frac{1}{r^{\prime}} e^{i k r^{\prime}}
$$

Now write down the full equation

Tractable Case?

$$
U_{P}=\frac{U_{0}}{4 \pi} \int_{A}\left(\frac{e^{i k r}}{r} \frac{\delta}{\delta n} \frac{e^{i k r^{\prime}}}{r^{\prime}}-\frac{e^{i k r^{\prime}}}{r^{\prime}} \frac{\delta}{\delta n} \frac{e^{i k r}}{r}\right) d S
$$

- Take a term...

$$
\frac{\delta}{\delta n} \frac{e^{i k r}}{r}=\cos (n, r) \frac{\delta}{\delta r} \frac{e^{i k r}}{r}=\cos (n, r)\left(\frac{i k r e^{i k r}}{r^{2}}-\frac{e^{i k r}}{r^{2}}\right)
$$

- The first term dominates if $\mathrm{kr} \gg 1$

Tractable Case?

$$
U_{P}=\frac{-i k U_{0}}{4 \pi} \int_{A} \frac{e^{i k\left(r+r^{\prime}\right)}}{r r^{\prime}}\left(\cos (n, r)-\cos \left(n, r^{\prime}\right)\right) d S
$$

- This is the Fresnel-Kirchoff integral
 illuminated by a symmetrical source
- Take the surface to be the "spherical cap" equidistant from the source spanning the hole
- $\cos \left(n, r^{\prime}\right)=-1$ and $r^{`}$ is a constant

Tractable Case?

$$
U_{P}=\frac{-i k}{4 \pi} \frac{U_{0} e^{i k r^{\prime}}}{r^{\prime}} \int_{A} \frac{e^{i k r}}{r}(\cos (n, r)+1) d S
$$

- Can see the second spherical wave in the integrand
- Plus an "obliquity factor" [Defined as $0.5(\cos (n, r)$ $\cos \left(n, r^{\prime}\right)$)]
- Also notice a phase shift of m/2 [NOT in Huygen's]
- Backwards propagation?

Babinet's Principle

$$
U_{P}=\frac{-i k}{4 \pi} \frac{U_{0} e^{i k r^{\prime}}}{r^{\prime}} \int_{A} \frac{e^{i k r}}{r}(\cos (n, r)+1) d S
$$

- If the hole is infinitely large then the effect must be as if the screen wasn't there

$$
U_{P}=\frac{U_{0} e^{i k_{P P^{\prime}}}}{r_{P P^{\prime}}}
$$

- Conversely if we have a small obscuration of the same size and shape as A

$$
U_{P}=\frac{U_{0} e^{i k r_{P P^{\prime}}}}{r_{P P^{\prime}}}-\frac{-i k}{4 \pi} \frac{U_{0} e^{i k r^{\prime}}}{r^{\prime}} \int_{A} \frac{e^{i k r}}{r}(\cos (n, r)+1) d S
$$

- The obscuration is complementary to the aperture

Babinet's Principle

- A plane wave is represented as an infinite plane of secondary radiators
- This must be the sum of the two complementary screens
- Infinite screen with a hole
- obscuration same size and shape as hole

