Lecture 20

Fraunhofer Diffraction - Transforms



Fraunhofer Diffraction
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m  This is effectively saying that BOTH the source and the
observation point are “far’ from the aperture



Fraunhofer Diffraction

m |f we now generalise this by replacing the plane wave
from the source (U,/z') by a general distribution across
the aperture U(X,,Y,)

B Recognise that in a paraxial approximation a long way
from the aperture it is the ANGLES that matter, not the
positions
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B |n case you don’t recognise it - the final expression is a 2-



D Fourier Transform relation!
Fraunhofer Diffraction
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relates x,, y, space to u, v space

m e.g. for a square aperture and a plane wave -

_j ' (.u (Vv
U, = Ik exp(£ [u? + vz]) U, Qxﬁysinc(") sinc(y)

2T1Z 2k 21T

m the intensity is the square of this function

For a circular function it is almost the same except that
It's a Bessel function, not a sinc function



Fraunhofer Diffraction

_ik 1Z
U, = —— e™PSl exp| —2[u? + v?
7 onz P 2k[ ]

f AUO(XO, o) exp(-ifux, + vy,]) dx,dy,

If this is so then we have a powerful technique

Applies for large distances

Applies for paraxial approximation

Maybe could relieve those with thought

BUT any U,(X,,Y,) can be used

We have computers - Have FFT - will compute!



Slits and Gratings

Consider a slit of dimension a,b at origin in X,, Y, plane

with light incident at angle 6

m  Wavefront is exp(ikx,sin@)rect(x,/a)rect(y,/b)

m  Also called the “aperture function”

Now consider a whole set of slits (a grating)

B use a convolution

m \Wavefront is

exp(ikx,sin@)rect(x,/a)rect(y,/b)*comb(x,/A\)

But that’s infinite - need it finite

m exp(ikx,sinB)rect(x,/a)rect(y,/b)*
[comb(x,/N\)rect(x,/(n/\))]

For the angular distribution - just need the Fourier

Transform

Assume b infinite



Slits and Gratings

F{exp(ikx,sin@)rect(x,/a) * [comb(x,/N\)rect(x,/(n/\))]}
F{exp(ikx,sin@)rect(x,/a) .7{[comb(x,/A)rect(x,/(n\))]}
Use shift property + “six transforms” on first term

|a| sinc( a[u + ksinB]/2 ) .7{[comb(x,/N\)rect(x,/(n/\))]}
Second term is a finite sum of d function

(N-1)/2 (N-1)/2
Fi Y, d(x, -nN = )  exp(-inuh)

n=-(N-1)/2 n=-(N-1)/2

and the total result becomes
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sin ( A [SINO + sinei])
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Grating Resolving Power

Peaks are from sin ratio (squared for intensity)
Envelope is from the sinc function

For normal incidence close to axis 6, =0 then width of
peak is of order (TTNA/A)cosBd0 = T

Maxima occur at (TTA/A)SIinG = mr

® /AcosB06 = mOA

combining these A/OA = mN

m  at 500 slits/mm and 50mm grating

m resolving poweris 2.5 x 10*ifm=1




Grating Energy Split
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m  This is the product of the FT of
m the slit (broad)

m the repetitive structure (narrow)

B The slit peaks the energy in the forward direction m=0
where there is no dispersion (resolving power)!!! - bad
idea!!

m  Playing with the slit might permit us to move the peak
energy from straight on (or straight back for reflection) to
another order



Grating Energy Split

B Suppose we use a (reflection) @
grating for which the slit “height”
IS h = hyx,tanf - ie a sawtooth

m Phase delay is composed of two
parts
m phase delay of “tilted” plane B

wave - kx, sind.

m phase delay due to sawtooth - hcos6,

m  Total phase delay is the sum of these and therefore
result is



Grating Energy Split

A’\ [Sind + sinei])

sin (
sinc (1 [sin® + sing, + tanBcosB] A/A)

sin ( ﬂ_)\/\ [SinG + sinei])

m  Notice that if B = 0 - grating disappears!!
m if mAA + sinB. + cosBtanf3 = O the power peaks in order
m



A Lens as an Aperture

m |f we compute the phase delay across a lens we can

make it an aperture function!
m Take a plane before the lens and a plane after
m  Can be shown that in the paraxial approximation the

thickness of the material iIs...

Xo +Yo |

AXyY,) = Dy - 1/R, - 1/R2]

® and the phase delay is given by

¢ = knh, - %c[x02+y02]



A Lens as an Aperture

Take the “puplil function” (ie physical extent of the lens)
as P(X,,Y,) - almost always a cylinder function

Take the incoming wavefront as t(x,,y,) - €.g. plane wave
Take the phase manipulation of the lens

Take the z dimension to be the focal length - f

Ignore phase factors and quadratic terms

f f: P(Xy,Yo) 1% Yo) exp( - % XX + yoy]) dx,dy,

Its a Fourier transform again!!
Focal plane image is FT of aperture function in front of
lens



A Lens as an Aperture

f f: P(Xy,Yo) 1% Yo) exp( - % XX + yoy]) dx,dy,

If input wave is plane and P is a cylinder function cyl(r/R)
Image plane is an airy function of size 2 ( 1.22Af/(2R))
Or using f/(2R) as the f-number - 2.44\f

So if A =500nm and f of order 1 image size is of order
lum

Generally f > 1 so spot size is > 1um



A Lens as an Aperture

m |n the formula
above

m |ow spatial
frequencies In
Incoming wave
turn up near
centre

m high spatial frequencies turn up away from the centre

m By putting an aperture at the focal point we can “clean
up” a mucky plane wave - only allow low frequency
components through




