Lecture 20

Fraunhofer Diffraction - Transforms

Fraunhofer Diffraction

$$U_{P} = \frac{-ikU_{0}}{2\pi zz'} e^{ik|PS|} \int_{A} \exp\left(\frac{ik}{2z_{a}} \left[(x_{0} - x_{m})^{2} + (y_{0} - y_{m})^{2}\right]\right) d\xi$$
$$= \frac{-ikU_{0}}{2\pi zz'} e^{ik|PS|} \exp\left(\frac{ik}{2z_{a}} \left[x_{m}^{2} + y_{m}^{2}\right]\right)$$
$$\cdot \int_{A} \exp\left(\frac{ik}{z_{a}} \left[(x_{0}x_{m} + y_{0}y_{m}\right]\right) dx_{0}dy_{0}$$

This is effectively saying that BOTH the source and the observation point are "far" from the aperture

Fraunhofer Diffraction

- If we now generalise this by replacing the plane wave from the source (U₀/z⁺) by a general distribution across the aperture U(x₀,y₀)
- Recognise that in a paraxial approximation a long way from the aperture it is the ANGLES that matter, not the positions

In case you don't recognise it - the final expression is a 2-

D Fourier Transform relation! Fraunhofer Diffraction

$$U_{P} = \frac{-ik}{2\pi z} e^{ik|PS|} \exp\left(\frac{iz_{a}}{2k}[u^{2} + v^{2}]\right)$$

.
$$\int_{A} U_{0}(x_{0}, y_{0}) \exp(-i[ux_{0} + vy_{0}]) dx_{0} dy_{0}$$

- relates x₀, y₀ space to u, v space
- e.g. for a square aperture and a plane wave -

$$U_{P} = \frac{-ik}{2\pi z} \exp\left(\frac{iz}{2k} \left[u^{2} + v^{2}\right]\right) U_{a} \ell_{x} \ell_{y} \operatorname{sinc}\left(\frac{\ell_{x} u}{2\pi}\right) \operatorname{sinc}\left(\frac{\ell_{y} v}{2\pi}\right)$$

- the intensity is the square of this function
- For a circular function it is almost the same except that it's a Bessel function, not a sinc function

Fraunhofer Diffraction

$$U_{P} = \frac{-ik}{2\pi z} e^{ik|PS|} \exp\left(\frac{iz_{a}}{2k}[u^{2} + v^{2}]\right)$$

.
$$\int_{A} U_{0}(x_{0}, y_{0}) \exp(-i[ux_{0} + vy_{0}]) dx_{0} dy_{0}$$

- If this is so then we have a powerful technique
 - Applies for large distances
 - Applies for paraxial approximation
 - Maybe could relieve those with thought
 - BUT any $U_0(x_0, y_0)$ can be used
 - We have computers Have FFT will compute!

Slits and Gratings

- Consider a slit of dimension a,b at origin in x₀, y₀ plane with light incident at angle θ
 - Wavefront is $exp(ikx_0sin\theta)rect(x_0/a)rect(y_0/b)$
 - Also called the "aperture function"
- Now consider a whole set of slits (a grating)
 - use a convolution
 - Wavefront is exp(ikx₀sinθ)rect(x₀/a)rect(y₀/b)*comb(x₀/Λ)
- But that's infinite need it finite
 - $exp(ikx_0sin\theta)rect(x_0/a)rect(y_0/b)^*$

 $[comb(x_0/\Lambda)rect(x_0/(n\Lambda))]$

- For the angular distribution just need the Fourier Transform
- Assume b infinite

Slits and Gratings

- $\mathscr{F}{\exp(ikx_0\sin\theta)\operatorname{rect}(x_0/a) * [\operatorname{comb}(x_0/\Lambda)\operatorname{rect}(x_0/(n\Lambda))]}$
- $\mathscr{F}{\exp(ikx_0 \sin\theta)}\operatorname{rect}(x_0/a) \mathscr{F}{[\operatorname{comb}(x_0/\Lambda)\operatorname{rect}(x_0/(n\Lambda))]}$
- Use shift property + "six transforms" on first term
- |a| sinc(a[u + ksin θ]/2) \mathscr{F} {[comb(x₀/ Λ)rect(x₀/(n Λ))]}
- Second term is a finite sum of δ function

$$\mathscr{F}\left\{\sum_{n=-(N-1)/2}^{(N-1)/2} \delta(x_0 - n\Lambda)\right\} = \sum_{n=-(N-1)/2}^{(N-1)/2} \exp(-inu\Lambda)$$

and the total result becomes

$$|a| \operatorname{sinc} \left(\pi[\sin\theta + \sin\theta_{j}] a/\lambda \right) \frac{\sin\left(\frac{\pi N\Lambda}{\lambda} [\sin\theta + \sin\theta_{j}]\right)}{\sin\left(\frac{\pi\Lambda}{\lambda} [\sin\theta + \sin\theta_{j}]\right)}$$

- Peaks are from sin ratio (squared for intensity)
- Envelope is from the sinc function
- For normal incidence close to axis θ_i =0 then width of peak is of order (πN/λ)cosθδθ = π
- Maxima occur at $(\pi \Lambda / \lambda) \sin \theta = m\pi$
 - Λcosθδθ = mδλ
- combining these $\lambda/\delta\lambda = mN$
 - at 500 slits/mm and 50mm grating
 - resolving power is 2.5×10^4 if m = 1

Grating Energy Split

$$|a| \operatorname{sinc}(\pi [\sin\theta + \sin\theta_i] a/\lambda) \frac{\sin\left(\frac{\pi N\Lambda}{\lambda} [\sin\theta + \sin\theta_i]\right)}{\sin\left(\frac{\pi\Lambda}{\lambda} [\sin\theta + \sin\theta_i]\right)}$$

- This is the product of the FT of
 - the slit (broad)
 - the repetitive structure (narrow)
- The slit peaks the energy in the forward direction m=0 where there is no dispersion (resolving power)!!! - bad idea!!
- Playing with the slit might permit us to move the peak energy from straight on (or straight back for reflection) to another order

Grating Energy Split

- Suppose we use a (reflection) grating for which the slit "height" is h = h₀x₀tanβ - ie a sawtooth
- Phase delay is composed of two parts
 - phase delay of "tilted" plane wave - kx₀ sinθ_i

- phase delay due to sawtooth hcosθ_i
- Total phase delay is the sum of these and therefore result is

Grating Energy Split

$$\operatorname{sinc}\left(\pi\left[\sin\theta + \sin\theta_{i} + \tan\beta\cos\theta_{i}\right]\Lambda/\lambda\right) \frac{\sin\left(\frac{\pi N\Lambda}{\lambda}\left[\sin\theta + \sin\theta_{i}\right]\right)}{\sin\left(\frac{\pi\Lambda}{\lambda}\left[\sin\theta + \sin\theta_{i}\right]\right)}$$

- Notice that if $\beta = 0$ grating disappears!!
- if $m\lambda/\Lambda + \sin\theta_i + \cos\theta_i \tan\beta = 0$ the power peaks in order m

A Lens as an Aperture

- If we compute the phase delay across a lens we can make it an aperture function!
- Take a plane before the lens and a plane after
- Can be shown that in the paraxial approximation the thickness of the material is...

$$\Delta(x_0, y_0) = \Delta_0 - \frac{x_0^2 + y_0^2}{2} \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

and the phase delay is given by

$$\varphi = kn\Delta_0 - \frac{k}{2f}\left[x_0^2 + y_0^2\right]$$

A Lens as an Aperture

- Take the "pupil function" (ie physical extent of the lens) as P(x₀,y₀) - almost always a cylinder function
- Take the incoming wavefront as $t(x_0, y_0) e.g.$ plane wave
- Take the phase manipulation of the lens
- Take the z dimension to be the focal length f
- Ignore phase factors and quadratic terms

$$\iint_{-\infty}^{+\infty} P(x_0, y_0) t(x_0, y_0) \exp\left(-\frac{2\pi i}{f\lambda} \left[x_0 x + y_0 y\right]\right) dx_0 dy_0$$

- Its a Fourier transform again!!
- Focal plane image is FT of aperture function in front of lens

A Lens as an Aperture
$$\int_{-\infty}^{+\infty} P(x_0, y_0) t(x_0, y_0) \exp\left(-\frac{2\pi i}{f\lambda} \left[x_0 x + y_0 y\right]\right) dx_0 dy_0$$

- if input wave is plane and P is a cylinder function cyl(r/R)
- Image plane is an airy function of size 2 (1.22λf/(2R))
- Or using f/(2R) as the *f*-number $2.44\lambda f^*$
- So if λ = 500nm and f^{*} of order 1 image size is of order 1µm
- Generally f^{*} > 1 so spot size is > 1µm

A Lens as an Aperture

- In the formula above
 - Iow spatial frequencies in incoming wave turn up near centre

- high spatial frequencies turn up away from the centre
- By putting an aperture at the focal point we can "clean up" a mucky plane wave - only allow low frequency components through