
Lecture 20

Fraunhofer Diffraction - Transforms
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Fraunhofer Diffraction

� This is effectively saying that BOTH the source and the
observation point are “far” from the aperture
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Fraunhofer Diffraction

� If we now generalise this by replacing the plane wave
from the source (U0/z‘ )  by a general distribution across
the aperture U(x0,y0)

� Recognise that in a paraxial approximation a long way
from the aperture it is the ANGLES that matter, not the
positions
� u = kxm/za, v = kym/za

� In case you don’t recognise it - the final expression is a 2-
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D Fourier Transform relation!
Fraunhofer Diffraction

� relates x0, y0 space to u, v space
� e.g. for a square aperture and a plane wave - 

� the intensity is the square of this function
� For a circular function it is almost the same except that

it’s a Bessel function, not a sinc function
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Fraunhofer Diffraction

� If this is so then we have a powerful technique
� Applies for large distances
� Applies for paraxial approximation
� Maybe could relieve those with thought
� BUT any U0(x0,y0) can be used
� We have computers - Have FFT - will compute!



Slits and Gratings

� Consider a slit of dimension a,b at origin in x0, y0 plane
with light incident at angle 
� Wavefront is exp(ikx0sin )rect(x0/a)rect(y0/b)
� Also called the “aperture function”

� Now consider a whole set of slits (a grating)
� use a convolution
� Wavefront is

exp(ikx0sin )rect(x0/a)rect(y0/b)*comb(x0/ )
� But that’s infinite - need it finite

� exp(ikx0sin )rect(x0/a)rect(y0/b)*
[comb(x0/ )rect(x0/(n ))]

� For the angular distribution - just need the Fourier
Transform

� Assume b infinite
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Slits and Gratings

� Û{exp(ikx0sin )rect(x0/a) *  [comb(x0/ )rect(x0/(n ))]}
� Û{exp(ikx0sin )rect(x0/a) Û{[comb(x0/ )rect(x0/(n ))]}
� Use shift property + “six transforms” on first term
� |a| sinc( a[u + ksin ]/2 ) Û{[comb(x0/ )rect(x0/(n ))]}
� Second term is a finite sum of  function

� and the total result becomes



Grating Resolving Power

� Peaks are from sin ratio (squared for intensity)
� Envelope is from the sinc function
� For normal incidence close to axis i =0 then width of

peak is of order ( N / )cos  = 
� Maxima occur at ( / )sin  = m

� cos  = m
� combining these  /  = mN

� at 500 slits/mm and 50mm grating
� resolving power is 2.5 x 104 if m = 1
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Grating Energy Split

� This is the product of the FT of
�  the slit (broad)
� the repetitive structure (narrow)

� The slit peaks the energy in the forward direction m=0
where there is no dispersion (resolving power)!!! - bad
idea!!

� Playing with the slit might permit us to move the peak
energy from straight on (or straight back for reflection) to
another order



Grating Energy Split

� Suppose we use a (reflection)
grating for which the slit “height”
is h = h0x0tan  - ie a sawtooth

� Phase delay is composed of two
parts
� phase delay of “tilted” plane

wave - kx0 sin i

� phase delay due to sawtooth - hcos i

� Total phase delay is the sum of these and therefore
result is
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Grating Energy Split

� Notice that if  = 0 - grating disappears!!
� if m /  + sin i + cos itan  = 0 the power peaks in order

m



(x0,y0) ' 0 &
x 2

0 %y 2
0

2
1/R1 & 1/R2

' kn 0 &
k
2f

x 2
0 % y 2

0

A Lens as an Aperture

� If we compute the phase delay across a lens we can
make it an aperture function!

� Take a plane before the lens and a plane after
� Can be shown that in the paraxial approximation the

thickness of the material is...

� and the phase delay is given by
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A Lens as an Aperture

� Take the “pupil function” (ie physical extent of the lens)
as P(x0,y0) - almost always a cylinder function

� Take the incoming wavefront as t(x0,y0) - e.g. plane wave
� Take the phase manipulation of the lens
� Take the z dimension to be the focal length - f
� Ignore phase factors and quadratic terms

� Its a Fourier transform again!!
� Focal plane image is FT of aperture function in front of

lens
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A Lens as an Aperture

� if input wave is plane and P is a cylinder function cyl(r/R)
� Image plane is an airy function of size 2 ( 1.22 f/(2R))
� Or using f/(2R) as the f-number - 2.44 f*

� So if  = 500nm and f* of order 1 image size is of order
1µm

� Generally f* > 1 so spot size is > 1µm



A Lens as an Aperture

� In the formula
above
� low spatial

frequencies in
incoming wave
turn up near
centre

� high spatial frequencies turn up away from the centre
� By putting an aperture at the focal point we can “clean

up” a mucky plane wave - only allow low frequency
components through


