Lecture 21

Holograms

Amplitude, Phase and Intensity

- The primary characteristics of a wavefront are the spatial distributions of
 - amplitude
 - phase
- A photographic film records the intensity of the wave as a function of the spatial co-ordinates
 - No Phase information
 - Cannot reconstruct the wavefront
 - Cannot reproduce the "view" of the object
- However an interference pattern does contain some phase information
 - cycles represent π change in phase

Amplitude, Phase and Intensity

- Consider two *coherent* beams incident upon a film
 - first one is normal to film
 - second at angle Θ_i
 - phase is $kx_0 sin\Theta_i$
- Amplitude is $[1 + \exp(i kx_0 \sin \Theta_i)]$
- Intensity is $2[1 + \cos(kx_0 \sin\Theta_i)]$
- Assume this is same numerically as the developed film transmission
- This is a diffraction grating in two parts 1 and cos(kx₀sinΘ_i)
- Illuminate with a normal "reconstruction" beam and let Λ = λ/sinΘ_i

Amplitude, Phase and Intensity

Result is

$$(1 + \delta(\sin\Theta_{i})) \frac{\sin\left(\frac{\pi N\Lambda}{\lambda} [\sin\theta]\right)}{\sin\left(\frac{\pi\Lambda}{\lambda} [\sin\theta]\right)}$$

- First term is plane wave (diffracted and dull)
- Second term is the same as second incident wave
- (also a third wave at -sin⊖_i but we won't worry about that)

Basic Holograms

- Remember these are *coherent* waves
- General case of two waves O(bject) and R(eference) waves
- Pattern is $-|O|^2 + |R|^2 + O^*R + R^*O$
- Assume that this is the same as transmission pattern
- Illuminate with beam aR (a is a scaling amplitude)
- $aR(|O|^2 + |R|^2 + O^*R + R^*O)$ = $aR|O|^2 + aR|R|^2 + aRO^*R + a|R|^2O$
- Last term is a reconstruction of O
- If the beams are spatially separate (different directions) and we can distinguish them

To Clarify...

Object wave is
 Oexp(iksinθ₁)

- Reference wave is Rexp(iksinθ₂)
- Intensity is
 O² + R² +
 OR{exp[ik(sinθ₁-sinθ₂)]
 + exp[-ik(sinθ₁-sinθ₂)]}

Direct

Conjugate

- Assume that this is transmission of hologram
- Illuminate with $R'exp(iksin\theta_3)$
 - $\{O^2 + R^2\}R'\exp(iksin\theta_3)$
 - + ORR' exp[ik(sin θ_1 -sin θ_2 +sin θ_3)] Object
 - + ORR' exp[ik(sin θ_2 -sin θ_1 +sin θ_3)]
- If $\theta_2 = \theta_3$ the object wave is reconstructed

To Clarify...

- Can get some interesting effects by changing wavelength and angle of illumination
- Different wavelength gives magnification / demagnification effect
- Variation in angle of reconstruction beam distorts image

- Illumination with white light produces rainbow like tinge to image
- Double exposure produces interference fringes highlighting image differences between exposures