Lecture 22

Gaussian Beams Paraxial or Perturbation Analysis

Perturbation Analysis

- Many of the examples we have treated have phase which
- varies fast in the DOP (z)
- varies slowly as a function of the other co-ordinates (x, y)
- Fresnel diffraction varies quadratically in the x, y direction
- ($1 / \mathrm{r}$) $\exp (\mathrm{ikr})$-> ($1 / \mathrm{z}) \exp (\mathrm{ikz}) \exp \left(\mathrm{ik}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /(2 z)\right)$
- separates the fast-changing z-direction from the slow changing x, y direction
- Can we generalise? (Yes, or I wouldn't be doing this...)
- write the wave as $u(x, y, z) \exp (i k z)$ - subst in wave equation

$$
\nabla_{T}^{2} u+\frac{\delta^{2} u}{\delta z^{2}}+2 i k \frac{\delta u}{\delta z}=0
$$

- ∇_{T} is the 2-D grad function

Paraxial Wave Equation

- If we now assume that the function
- varies slowly in z on the scale of a wavelength $|\partial u / \partial z|$ « $k|u|$
- that it is smooth - higher order differentials can be ignored

$$
\nabla_{T}^{2} u+\frac{\delta^{2} u}{\delta z^{2}}+2 i k \frac{\delta u}{\delta z} \rightarrow \nabla_{T}^{2} u+2 i k \frac{\delta u}{\delta z}=0
$$

- The slowly varying envelope approximation (SVEA) leads to the paraxial wave equation
- Note that $(1 / \mathrm{z}) \exp \left(\mathrm{ik}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /(2 \mathrm{z})\right)$ is a solution of the above equation
- Trouble with that solution is that it has infinite extent - is there a similar solution which has finite extent - ie looks something like a pencil beam?

A Gaussian Beam

- Yes, there is....
- ($1 / \mathrm{z}) \exp \left(\mathrm{ik}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /(2 \mathrm{z})\right)$) ->
- $\mathrm{u}_{00}{ }^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(1 /\left(\mathrm{z}-\mathrm{iz} \mathrm{z}_{0}\right)\right) \exp \left(\mathrm{ik}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /\left(2\left(\mathrm{z}-\mathrm{iz} \mathrm{z}_{0}\right)\right)\right.$
- $z->z-i z_{0}$
- Normalise over x, y

$$
\begin{aligned}
u_{00}(x, y, z) & =\sqrt{\frac{k z_{0}}{\pi}} \frac{1}{z-i z_{0}} \exp \left(\frac{i k\left[x^{2}+y^{2}\right]}{2\left(z-i z_{0}\right)}\right) \\
& =\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{\left[x^{2}+y^{2}\right]}{w^{2}}\right) \exp \left(\frac{i k\left[x^{2}+y^{2}\right]}{2 R}\right)
\end{aligned}
$$

- $w^{2}(z)=w_{0}{ }^{2}\left(1+z^{2} / z_{0}{ }^{2}\right)$,
$w_{0}{ }^{2}=2 z_{0} / k$
- $R=\left(z^{2}+z_{0}^{2}\right) / z$,

$$
\tan \varphi=z / z_{0}
$$

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- Fundamental Gaussian Beam Solution
- Function of one parameter - z_{0}
- Circularly symmetric - function of r
- Gaussian extent transversely - w is the e^{-1} point of amplitude
- at $\mathrm{z}=0, \mathrm{w}=\mathrm{w}_{0}$ and is the minimum extent of beam
- at $\mathrm{z}=\mathrm{z}_{0}, \mathrm{w}=\sqrt{ } 2 \mathrm{w}_{0}-\mathrm{z}_{0}$ is called the confocal parameter

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- What is the shape of the red line of constant amplitude?
- $r^{2} / w^{2}=C$
- $\mathrm{r}^{2}-\left(\mathrm{Cw}_{0}{ }^{2} / \mathrm{z}_{0}{ }^{2}\right) \mathrm{z}^{2}=\mathrm{Cw}_{0}{ }^{2}$

- Hyberolas
- Note that the confocal parameter z_{0} gives the distance over which the beam is "sort of" collimated and w_{0} gives the minimum beam size
- Since $z_{0}=k w_{0}{ }^{2} / 2$ you can't have a small beam collimated for a long distance. - small waist, large divergence and vv

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- What is the asymptotic angle θ ?
- for large r,z,

$$
\begin{aligned}
& \tan (\theta / 2)=w / z \\
& =w_{0}\left(z / z_{0}\right) / z \\
& =w_{0} / z_{0}=2 /\left(k w_{0}\right)
\end{aligned}
$$

- Putting in numbers at 500 nm and a 1 mm spot $\theta=0.32 \mathrm{mr}$
- ie spot size increases by $1 \mathrm{~mm} / 3 \mathrm{~m}$ - laser-beam like

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- What is the significance of R ?
- R is the radius of curvature of the surfaces of constant
 phase
- as $z \rightarrow 0, R \rightarrow \infty$
- as $z \rightarrow \infty, R \rightarrow z$
- What is the significance of φ ?
- φ is related to the velocity of surfaces of constant phase
- Remember this isn't a plane wave and doesn't even satisfy the full wave equation

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- Beam propagates as $\exp (i k z-i \varphi)$
- If we take $k_{\text {eff }}$ as the average over $0 \rightarrow$ z

$$
k_{e f f}=k-\frac{d \varphi}{d z}=\frac{\omega}{c}-\frac{z_{0}}{z^{2}+z_{0}^{2}}<\frac{\omega}{c}
$$

- which implies that the phase velocity is > c which isn't a problem because this isn't a solution of the full wave equation

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- When is all this valid?
- When $|\partial u / \partial z|<k|u|$
- which turns out to be when $1 / z_{0}$ « k or $\lambda<1.4 \mathrm{Tw}_{0}$

- Beam waist much larger than wavelength

Standing Waves In a 1.5-D cavity

- A cavity is formed by two mirrors assumed for simplicity to be 100\% reflecting

- A mode (or standing wave) happens if...
- Amplitude of field at any point is stationary
- Phase is also stationary
- Neglect refraction losses
- Can set up a mode if beam is Gaussian and mirrors match R_{1}, R_{2} the radii of the wavefronts at each end

Standing Waves In a 1.5-D cavity

- $-R_{1}=\left(z_{1}^{2}+z_{0}^{2}\right) / z$
$R_{2}=\left(z_{2}{ }^{2}+z_{0}{ }^{2}\right) / z$
Remember one z has to be -ve

- Let $\mathrm{z}_{2}-\mathrm{z}_{1}=\mathrm{L}$
- Let $g_{1,2}=\left(1-L / R_{1,2}\right)$
- Solve for Z_{0}

$$
z_{0}^{2}=\frac{L^{2} g_{1} g_{2}\left(1-g_{1} g_{2}\right)}{\left(g_{1}+g_{2}-2 g_{1} g_{2}\right)^{2}}, \quad w_{0}^{2}=\frac{2}{k} \frac{L \sqrt{g_{1} g_{2}\left(1-g_{1} g_{2}\right)}}{\left(g_{1}+g_{2}-2 g_{1} g_{2}\right)}
$$

Standing Waves In a 1.5-D cavity

- and for the spot sizes on the mirror $\mathrm{w}_{1,2}$

$$
w_{1,2}^{2}=\frac{L \lambda}{\pi} \sqrt{\frac{g_{2,1}}{g_{1,2}\left(1-g_{1} g_{2}\right)}}
$$

- These solutions exist if $0<g_{1} g_{2}<1$
- Stable solutions require all of $\mathrm{w}_{1}, \mathrm{w}_{2}$ and w_{0} to be finite and larger than the wavelength λ

Standing Waves In a 1.5-D cavity

- If $g_{1}=g_{2}=1$ both mirrors are plane - FP
- all w are infinite!
- If $g_{1}=g_{2}=0, R=L$ and the cavity is confocal
- OK but $w_{0}=0$
- If $g_{1}=g_{2}=-1, R=L / 2$ the cavity is concentric
- $\mathrm{w}_{1,2}$ are infinite!

Standing Waves In a 1.5-D cavity

- if $g_{1}=0, g_{2}<1$ we have one flat mirror at the beam waist and one curved mirror

$$
w_{0,1}^{2}=\frac{2 L}{k} \sqrt{\frac{g_{2}}{1-g_{2}}}, \quad w_{2}^{2}=\frac{2 L}{k} \sqrt{\frac{1}{g_{2}\left(1-g_{2}\right)}}
$$

- This is OK for a range of g_{2}
- For $\mathrm{L}=1 \mathrm{~m}, \lambda=1 \mu \mathrm{~m}$ for $\mathrm{R}_{2}=5 \mathrm{~m}-20 \mathrm{~m} \mathrm{w}_{0,1,2}$ of order 1 mm

