Lecture 22

Gaussian Beams
Paraxial or Perturbation Analysis



Perturbation Analysis

Many of the examples we have treated have phase which
m varies fast in the DOP (z)
m varies slowly as a function of the other co-ordinates

(X,y)
Fresnel diffraction varies quadratically in the X,y direction
m (1/r)exp(ikr) -> (1/2)exp(ikz) exp(ik(x*+y*)/(2z))
B separates the fast-changing z-direction from the slow

changing X,y direction
Can we generalise? (Yes, or | wouldn’t be doing this...)
write the wave as u(X,y,z)exp(ikz) - subst in wave
equation

v§u+@+2ik@=o
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V; Is the 2-D grad function



Paraxial Wave Equation

If we now assume that the function

m varies slowly in z on the scale of a wavelength
lou/oz| « K]|ul|

m that it is smooth - higher order differentials can be
ignored
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The slowly varying envelope approximation (SVEA) leads
to the paraxial wave equation

Note that (1/z)exp(ik(x*+y?)/(22)) is a solution of the
above eqguation

Trouble with that solution is that it has infinite extent - is
there a similar solution which has finite extent - ie looks
something like a pencil beam?



A Gaussian Beam

m Yes, thereis....
m (1/2)exp(ik(x*+y?)/(22)) ->

B Uy (X,Y,2) = (1(z-iz,))exp(ik(x*+y*)/(2(z-iz,))
m 7Z->7-1z,

m Normalise over X, y

kz 1 Tx2 + 2
Ugo(X.Y,2) = \ ° — EXp kX 4 ]
T Z- iz, 2(z - izy)
[~ , 2 2 2 2
= g i e —Ip exp — [X + y ] exp Ik[X + y ]
\ m W W2 2R
B W (2) = w2 (1 + Z%/z,°), W,° = 27,/

B R =(z°+z2,)/z, tan ¢ = z/z,



Properties of the Gaussian Beam

121 re ikr®
UpXy,2) = | — — e ™ exp| - — | €xp
m W w

2R
Fundamental Gaussian Beam Solution
Function of one parameter - z,
Circularly symmetric - function of r
Gaussian extent transversely - w is the e™ point of
amplitude
at z =0, w = w, and is the minimum extent of beam
atz =z, w=v2w, -z, is called the confocal parameter




Properties of the Gaussian Beam

121 re ikr®
UpXy,2) = | — — e ™ exp| - — | &XP| o5
m W w

2R
What is the shape of

z=0
the red line of constant \_/
amplitude?
r’lw* = C /’\

r° - (Cw,y°/z,°)z° = Cw,’
Hyberolas

Note that the confocal parameter z, gives the distance
over which the beam is “sort of” collimated and w, gives
the minimum beam size

Since z, = kw,*/2 you can’t have a small beam
collimated for a long distance. - small waist, large
divergence and vv



Properties of the Gaussian Beam

UpXy,2) = | — — e ™ exp| - — | €xp
m W w

What is the asymptotic
angle 07

for large r,z,

tan(6/2) = w/z

= W,(2/z,)/z

= W,/z, = 2/(kw,)

2R

ikrz)
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— |

Putting in numbers at 500nm and a 1mm spot 6 = 0.32mr
le spot size increases by 1mm/3m - laser-beam like



Properties of the Gaussian Beam

121 re ikr*
UpXy,2) = | — — e ™ exp| - — | &XP| o5
m W w

2R
What is the

z=0
significance of R? \_/
R Is the radius of
curvature of the /‘\

surfaces of constant

phase

asz-0,R~

asz- oo, R~z

What is the significance of ¢?

B is related to the velocity of surfaces of constant
phase

B Remember this isn’t a plane wave and doesn’t even
satisfy the full wave equation



Properties of the Gaussian Beam

Uno(XY,2) = 21 o exp _r exp ikr®
m W W2 2R

Beam propagates as

exp(ikz-ip) _/

If we take k., as the

average over 0 - z \
w

_ (P_
kff_ _ T =

which implies that the phase velocity is > ¢ which isn’t a
problem because this isn’t a solution of the full wave
equation



Properties of the Gaussian Beam

121 re ikr®
UpXy,2) = | — — e ™ exp| - — | €xp
m W w

When is all this valid?

2R
z=0
When |0u/oz| « k|u| ~ | —
which turns out to be
when 1/z, « k or /\

A « 1.41TW,
Beam waist much larger than wavelength



Standing Waves In a 1.5-D cavity

z=0

A cavity Is formed by two \/

mirrors assumed for

simplicity to be 100% /—\

reflecting

A mode (or standing
wave) happens if...
m Amplitude of field at any point is stationary

m Phase is also stationary

Neglect refraction losses

Can set up a mode if beam is Gaussian and mirrors
match R,,R, the radii of the wavefronts at each end



Standing Waves In a 1.5-D cavity

‘R, = (z,°+2,)/z

R, = (2,°+2,%)/z
Remember one z has to
be -ve

Letz, -z, =L

Letg,, = (1-L/Ry,)
Solve for z,

2 - L9,9, (1 - 9,9,)
(gl + gz N 29192)2

z=0

==
/\




Standing Waves In a 1.5-D cavity

and for the spot sizes on
the mirror w, ,

z=0

==
/\

LA

2 —_—
Wi, =

921

™A

9,,(1-9,9,)

These solutions existif 0 <g,g, <1
Stable solutions require all of w,, w, and w, to be finite
and larger than the wavelength A



Standing Waves In a 1.5-D cavity

If g, = g, = 1 both mirrors
are plane - FP

m all ware infinite!
Ifg,=9g,=0,R=Land
the cavity is confocal

B OKbutw,=0
fg,=9g,=-1, R=1L/2
the cavity is concentric

= w,, are infinite!

9
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Standing Waves In a 1.5-D cavity

A
m ifg, =0, g, <1we have g
one flat mirror at the | Plano/Plano
beam waist and one
- Confocdal
curved mirror - .
9,
X
Concentric
2 2L 9, 2 2L 1
WO,l - T y W2 = —
KNL-9 KN 9(1-9)

m This is OK for a range of g,
m ForlL=1m, A=1um for R, =5m-20m w,, , of order 1mm



