Lecture 22

Gaussian Beams Paraxial or Perturbation Analysis

Perturbation Analysis

- Many of the examples we have treated have phase which
 - varies fast in the DOP (z)
 - varies slowly as a function of the other co-ordinates (x,y)
- Fresnel diffraction varies quadratically in the x,y direction
 - $(1/r)\exp(ikr) \rightarrow (1/z)\exp(ikz)\exp(ik(x^2+y^2)/(2z))$
 - separates the fast-changing z-direction from the slow changing x,y direction
- Can we generalise? (Yes, or I wouldn't be doing this...)
- write the wave as u(x,y,z)exp(ikz) subst in wave equation

$$\nabla_T^2 u + \frac{\delta^2 u}{\delta z^2} + 2ik\frac{\delta u}{\delta z} = 0$$

• ∇_{T} is the 2-D grad function

Paraxial Wave Equation

- If we now assume that the function
 - varies slowly in z on the scale of a wavelength |∂u/∂z| « k|u|
 - that it is smooth higher order differentials can be ignored

$$\nabla_T^2 u + \frac{\delta^2 u}{\delta z^2} + 2ik\frac{\delta u}{\delta z} \rightarrow \nabla_T^2 u + 2ik\frac{\delta u}{\delta z} = 0$$

- The slowly varying envelope approximation (SVEA) leads to the paraxial wave equation
- Note that (1/z)exp(ik(x²+y²)/(2z)) is a solution of the above equation
- Trouble with that solution is that it has infinite extent is there a similar solution which has finite extent - ie looks something like a pencil beam?

A Gaussian Beam

Yes, there is.... $(1/z)\exp(ik(x^2+y^2)/(2z)) \rightarrow$ $u_{00}'(x,y,z) = (1/(z-iz_0))\exp(ik(x^2+y^2)/(2(z-iz_0)))$ $z \rightarrow z - iz_0$

Normalise over x, y

$$\begin{aligned} u_{00}(x,y,z) &= \sqrt{\frac{kz_0}{\pi}} \frac{1}{z - iz_0} \exp\left(\frac{ik[x^2 + y^2]}{2(z - iz_0)}\right) \\ &= \sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i\varphi} \exp\left(-\frac{[x^2 + y^2]}{w^2}\right) \exp\left(\frac{ik[x^2 + y^2]}{2R}\right) \end{aligned}$$

•
$$w^2(z) = w_0^2(1 + z^2/z_0^2),$$
 $w_0^2 = 2z_0/k$
• $R = (z^2 + z_0^2)/z,$ $\tan \phi = z/z_0$

$$u_{00}(x,y,z) = \sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i\varphi} \exp\left(-\frac{r^2}{w^2}\right) \exp\left(\frac{ikr^2}{2R}\right)$$

- Fundamental Gaussian Beam Solution
- Function of one parameter z_0
- Circularly symmetric function of r
- Gaussian extent transversely w is the e⁻¹ point of amplitude
- at z = 0, $w = w_0$ and is the minimum extent of beam
- at $z = z_0$, $w = \sqrt{2} w_0 z_0$ is called the *confocal parameter*

$$u_{00}(x,y,z) = \sqrt{\frac{2}{\pi} \frac{1}{w}} e^{-i\varphi} \exp\left(-\frac{r^2}{w^2}\right) \exp\left(\frac{ikr^2}{2R}\right)$$

What is the shape of the red line of constant amplitude?

•
$$r^2/w^2 = C$$

•
$$r^2 - (Cw_0^2/z_0^2)z^2 = Cw_0^2$$

Hyberolas

- Note that the confocal parameter z₀ gives the distance over which the beam is "sort of" collimated and w₀ gives the minimum beam size
- Since z₀ = kw₀²/2 you can't have a small beam collimated for a long distance. small waist, large divergence and vv

$$u_{00}(x,y,z) = \sqrt{\frac{2}{\pi} \frac{1}{w}} e^{-i\varphi} \exp\left(-\frac{r^2}{w^2}\right) \exp\left(\frac{ikr^2}{2R}\right)$$

- What is the asymptotic angle θ?
- for large r,z, $tan(\theta/2) = w/z$ $= w_0(z/z_0)/z$ $= w_0/z_0 = 2/(kw_0)$

- Putting in numbers at 500nm and a 1mm spot $\theta = 0.32mr$
- ie spot size increases by 1mm/3m laser-beam like

$$u_{00}(x,y,z) = \sqrt{\frac{2}{\pi} \frac{1}{w}} e^{-i\varphi} \exp\left(-\frac{r^2}{w^2}\right) \exp\left(\frac{ikr^2}{2R}\right)$$

- What is the significance of R?
- R is the radius of curvature of the surfaces of constant phase

■ as
$$z \rightarrow 0$$
, $R \rightarrow \infty$

- as $z \to \infty$, $R \to z$
- What is the significance of φ ?
 - φ is related to the velocity of surfaces of constant phase
 - Remember this isn't a plane wave and doesn't even satisfy the full wave equation

$$u_{00}(x,y,z) = \sqrt{\frac{2}{\pi} \frac{1}{w}} e^{-i\varphi} \exp\left(-\frac{r^2}{w^2}\right) \exp\left(\frac{ikr^2}{2R}\right)$$

which implies that the phase velocity is > c which isn't a problem because this isn't a solution of the full wave equation

$$u_{00}(x,y,z) = \sqrt{\frac{2}{\pi} \frac{1}{w}} e^{-i\varphi} \exp\left(-\frac{r^2}{w^2}\right) \exp\left(\frac{ikr^2}{2R}\right)$$

- When is all this valid?
- When |∂u/∂z| « k|u|
- which turns out to be when 1/z₀ « k or λ « 1.4πw₀

Beam waist much larger than wavelength

A cavity is formed by two mirrors assumed for simplicity to be 100% reflecting

- A mode (or standing wave) happens if...
 - Amplitude of field at any point is stationary
 - Phase is also stationary
- Neglect refraction losses
- Can set up a mode if beam is Gaussian and mirrors match R₁,R₂ the radii of the wavefronts at each end

- These solutions exist if $0 < g_1g_2 < 1$
- Stable solutions require all of w_1 , w_2 and w_0 to be finite and larger than the wavelength λ

- This is OK for a range of g_2
- For L = 1m, λ = 1µm for R₂ = 5m-20m w_{0,1,2} of order 1mm