Lecture 24

Gaussian Beam Optics

Perturbation Analysis

- Many of the examples we have treated have phase which
- varies fast in the DOP (z)
- varies slowly as a function of the other co-ordinates (x, y)
- Fresnel diffraction varies quadratically in the x, y direction
- (1/r)exp(ikr) -> (1/z) exp(ikz) $\exp \left(i k\left(x^{2}+y^{2}\right) /(2 z)\right)$
- separates the fast-changing z-direction from the slow changing x, y direction
- We can generalise!
- write the wave as $u(x, y, z) \exp (i k z)$ - subst in wave equation

$$
\nabla_{T}^{2} u+\frac{\delta^{2} u}{\delta z^{2}}+2 i k \frac{\delta u}{\delta z}=0
$$

- $\quad \nabla_{\mathrm{T}}$ is the 2-D grad function

Paraxial Wave Equation

- If we now assume that the function
- varies slowly in z on the scale of a wavelength $|\partial u / \partial z|$ « $k|u|$
- that it is smooth - higher order differentials can be ignored

$$
\nabla_{T}^{2} u+\frac{\delta^{2} u}{\delta z^{2}}+2 i k \frac{\delta u}{\delta z} \rightarrow \nabla_{T}^{2} u+2 i k \frac{\delta u}{\delta z}=0
$$

- The slowly varying envelope approximation (SVEA) leads to the paraxial wave equation
- Note that $u(x, y, z)=(1 / z) \exp \left(i k\left(x^{2}+y^{2}\right) /(2 z)\right)$ is a solution of the above equation
- Trouble with that solution is that it has infinite extent - is there a similar solution which has finite extent - ie looks something like a pencil beam?

A Gaussian Beam

- Yes, there is....
- ($1 / \mathrm{z}) \exp \left(\mathrm{ik}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /(2 \mathrm{z})\right)$) ->
- $\mathrm{u}_{00}{ }^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(1 /\left(\mathrm{z}-\mathrm{iz} \mathrm{z}_{0}\right)\right) \exp \left(\mathrm{ik}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /\left(2\left(\mathrm{z}-\mathrm{iz} \mathrm{z}_{0}\right)\right)\right.$
- $z->z-i z_{0}$
- Normalise over x, y

$$
\begin{aligned}
u_{00}(x, y, z) & =\sqrt{\frac{k z_{0}}{\pi}} \frac{1}{z-i z_{0}} \exp \left(\frac{i k\left[x^{2}+y^{2}\right]}{2\left(z-i z_{0}\right)}\right) \\
& =\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{\left[x^{2}+y^{2}\right]}{w^{2}}\right) \exp \left(\frac{i k\left[x^{2}+y^{2}\right]}{2 R}\right)
\end{aligned}
$$

- $w^{2}(z)=w_{0}{ }^{2}\left(1+z^{2} / z_{0}{ }^{2}\right)$,
$w_{0}{ }^{2}=2 z_{0} / k$
- $R=\left(z^{2}+z_{0}^{2}\right) / z$,

$$
\tan \varphi=z / z_{0}
$$

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- Fundamental Gaussian Beam Solution
- One parameter - z_{0} - describes the beam
- Circularly symmetric - function of r
- Gaussian extent transversely - w is the e^{-1} point of amplitude
- at $\mathrm{z}=0, \mathrm{w}=\mathrm{w}_{0}$ and is the minimum extent of beam
- at $\mathrm{z}=\mathrm{z}_{0}, \mathrm{w}=\sqrt{ } 2 \mathrm{w}_{0}-\mathrm{z}_{0}$ is called the confocal parameter

Properties of the Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)
$$

- What is the significance of R ?
- R is the radius of curvature of the surfaces of constant
 phase
- as $z \rightarrow 0, R \rightarrow \infty$
- as $z \rightarrow \infty, R \rightarrow z$
- What is the significance of φ ?
- φ is related to the velocity of surfaces of constant phase
- Remember this isn't a plane wave and doesn't even satisfy the full wave equation

Any Other Solutions?

- Yes, it can be shown that...
$u_{l, m}(x, y, z)=$
$\frac{C_{l, m}}{w} H_{l}\left[\frac{x \sqrt{2}}{w}\right] H_{m}\left[\frac{y \sqrt{2}}{w}\right] e^{-i(l+m+1) \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)$
- Where $H_{m}(x)$ is a Hermite polynomial
- $\mathrm{C}_{l, \mathrm{~m}}$ is a normalisation constant
- I and m are integers
- AKA TEM ${ }_{\text {lm }}$
- Phase speed is

$$
k_{\text {eff }}=k-(I+m+1) \frac{z_{0}}{z^{2}+z_{0}^{2}}
$$

Paraxial Optics With Gaussian Beams

- A Gaussian beam is a function of z_{0}
- Gaussian beam at any position is a function of $q=z-i z_{0}$
- A Gaussian beam is locally a spherical wave with radius of curvature R
- Consider a Gaussian beam on a thin lens
- The size of the beam doesn't change on either side of the lens
- The curvature of the beam is altered by the lens
- IT CAN BE SHOWN THAT
- The transformation of the parameter q is given by
- $q^{\prime}=(A q+B) /(C q+D)$
- where A, B, C, D are the elements of the 2×2 matrix for paraxial ray optical systems
- Notice that this is NOT a matrix equation

Transformations of Gaussian Beams

- Stated that $u(x, y, z)=(1 / q) \exp \left(i k\left(x^{2}+y^{2}\right) /(2 q)\right)$ is a solution to the paraxial wave equation
- Where $\mathrm{q}=\mathrm{z}-\mathrm{i} \mathrm{z}_{0}, \mathrm{z}$ is the distance in the DOP and z_{0} describes the Gaussian beam (Gaussian beam parameter)
- By inspection of wave equation solution show $q(z)$ propagates as:
- $1 / q(z)=1 / R(z)+i N\left(\pi n w(z)^{2}\right)$
- Far field propagate like spherical wave $R(z)->z, \quad z->\infty$

Free Space Gaussian Beam

- Consider a Gaussian beam propagating in free space
- Reference frame for Gaussian beams defines waist at z=0
- At plane $z=z_{1}$ we can write $q_{1}=z_{1}-i z_{0}$
- At plane $\mathrm{z}=\mathrm{z}_{2}$ we can write $\mathrm{q}_{2}=\mathrm{z}_{2}-\mathrm{i} \mathrm{z}_{0}=\mathrm{q}_{1}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)$
- Plane shift corresponds to change in real component of q
- Can calculate beam width and curvature at new position as

$$
\begin{gathered}
1 / q(z) \\
= \\
1 / R(z) \\
+i \\
N(\pi n \\
\left.\mathrm{w}(\mathrm{z})^{2}\right)
\end{gathered}
$$

Gaussian Beams and Optics

- Consider a thin lens with an incident Gaussian Beam
- Spot size does not change as beam passes through lens
- But, lens changes wave front (earlier Fraunhoffer lecture)

$$
T(x, y)=\exp \left(-i k\left(x^{2}+y^{2}\right) / 2 f\right)
$$

- Apply this directly to wave equation solution at lens boundary => effect is to change $R->R^{\prime}$

$$
\frac{i k\left(x^{2}+y^{2}\right)}{2 R^{\prime}}=\frac{i k\left(x^{2}+y^{2}\right)}{2 R}-\frac{i k\left(x^{2}+y^{2}\right)}{2 f}
$$

Gaussian Beams and Optics II

- We can simplify this as $1 / R^{\prime}=1 / R-1 / f$
- So, $1 / q^{\prime}=1 / q-1 / f \quad$ [the spot size does not change]
- We can therefore write the lens transformation as

$$
q^{\prime}=q /(-q / f+1)
$$

- Equivalent to defining a new origin and Gaussian beam parameter for the propagating wave
- As previously outlined, the general transformation is

$$
q^{\prime}=(A q+B) /(C q+D)
$$

- Known as a fractional linear or Möbius transformation
- To confuse matters further the transformation is also called the ABCD law and is written as a pseudo-matrix [A B; C D]
- THIS HAS NOTHING TO DO WITH MATRIX ALGEBRA!

Common Transformations

- Free Space Transformation becomes $\left[1 z_{2}-z_{1} ; 01\right]$
- Thin lens with focal length f becomes [10;-1/f 1]
- Note that converging lenses have +ve f by convention
- Series of optical components can be represented by result of successive transformations in q space

$$
M_{\text {series }}=M_{1} \ldots M_{\text {last }}
$$

- Multiple transformations are applied in an order determined by the beam propagation

Gaussian Beam Summary

- A Gaussian beam is the paraxial limit solution to a wave equation
- Equivalent to a point source shifted by an imaginary amount iz_{0}
- With $z_{0}=0$ paraxial solution is just portion of spherical wave emanating from the origin
- $\mathrm{q}=\mathrm{z}-\mathrm{i} \mathrm{z}_{0}$ measures complex distance from reference plane (waist of Guassian beam)
- Transforms in q-space can be used to model effect of optics on a Gaussian beam

Applications of Gaussian Beam Optics

- Results are remarkably similar to ray tracing but equations include wave behaviour of light
- Gaussian beam does not behave quite like a plane wave and consequently equivalent calculations give slightly different answers
- Laser people routinely carry out these calculations
- Simple example next lecture...

Gaussian Beam Optics: Example

Question: A He-Ne laser operating in Gaussian mode has a divergence of 1 mR and with a beam waist at the output of 0.4 mm . What is the diffraction limited spot size that we can achieve with a lens $f=+2 \mathrm{~cm}$ located 1 m from the beam waist?

